若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx在x=1處有極值,則a+b等于( 。
A.2B.3C.6D.9
a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx在x=1處有極值,可知f′(1)=0,
而f′(x)=12x2-2ax-2b
故12-2a-2b=0
故a+b=6
故選C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y=x-
1
x
在點(diǎn)(1,0)處的切線方程為( 。
A.y=2x-2B.y=x-1C.y=0D.y=-x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)當(dāng)a=1時(shí),過原點(diǎn)的直線與函數(shù)f(x)的圖象相切于點(diǎn)P,求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)0<a<
1
2
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=
1
3
時(shí),設(shè)函數(shù)g(x)=x2-2bx-
5
12
,若對于?x1∈(0,e],?x2∈[0,1]使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.(e是自然對數(shù)的底,e<
3
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+ax-lnx,a∈R
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)-x2,是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;
(3)求證:當(dāng)x∈(0,e]時(shí),e2x-
5
2
>lnx+
lnx
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=
eax
x2+1
,a∈R

(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)求函數(shù)f(x)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)n階方陣,任取An中的一個(gè)元素,記為x1;劃去x1所在的行和列,將剩下的元素按原來的位置關(guān)系組成n-1階方陣An-1,任取An-1中的一個(gè)元素,記為x2;劃去x2所在的行和列,…;將最后剩下的一個(gè)元素記為xn,記Sn=x1+x2+…+xn,則
lim
n→∞
Sn
n3+1
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)y=f(x)是R上的可導(dǎo)函數(shù),當(dāng)x≠0時(shí),有f′(x)+
f(x)
x
>0
,則函數(shù)F(x)=xf(x)+
1
x
的零點(diǎn)個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)=-
1
3
x3
+x在(a,10-a2)上有最大值,則實(shí)數(shù)a的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

f(x)=2x4-3x2+1在[
1
2
,2]上的最大值、最小值分別是______.

查看答案和解析>>

同步練習(xí)冊答案