cos(2π-α)=
1
2
α∈(-
π
2
,0)
,則cos(α-
2
)
=(  )
A、
3
2
B、-
3
2
C、-
1
2
D、±
3
2
分析:已知等式左邊利用誘導(dǎo)公式化簡求出cosα的值,根據(jù)α的范圍,利用同角三角函數(shù)間的基本關(guān)系求出sinα的值,原式利用誘導(dǎo)公式化簡后,將sinα的值代入計(jì)算即可求出值.
解答:解:∵cos(2π-α)=cosα=
1
2
,α∈(-
π
2
,0),
∴sinα=-
1-(
1
2
)2
=-
3
2

則cos(α-
2
)=cos(
2
-α)=-sinα=
3
2

故選:A.
點(diǎn)評(píng):此題考查了運(yùn)用誘導(dǎo)公式化簡求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(α)=
sin(
π
2
-α)cos(2π-α)tan(-α+π)
tan(π+α)sin(-π-α)

(1)化簡f(α);(2)若cos(α-
π
2
)=
1
5
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(2π-α)=
5
3
α∈(-
π
2
,0)
,則sin(π-α)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(
π
2
-α)=
3
2
,則sinα=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos
θ
2
=
3
5
,sin
θ
2
=-
4
5
,則角θ
的終邊所在直線方程為
24x-7y=0
24x-7y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為第二象限角,f(α)=
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-α-π)sin(-α-π)

(1)化簡f(α);
(2)若cos(α-
π
2
)=
1
3
,求f(α)的值.

查看答案和解析>>

同步練習(xí)冊答案