【題目】設(shè)a,b,c表示三條不同的直線(xiàn),M表示平面,給出下列四個(gè)命題:其中正確命題的個(gè)數(shù)有( )
①若a//M,b//M,則a//b;
②若bM,a//b,則a//M;
③若a⊥c,b⊥c,則a//b;
④若a//c,b//c,則a//b.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
【答案】B
【解析】
由空間直線(xiàn)的位置關(guān)系及空間直線(xiàn)與平面的位置關(guān)系逐一判斷即可得解.
解:對(duì)于①,若a//M,b//M,則a//b或與相交或與異面,即①錯(cuò)誤;
對(duì)于②,若bM,a//b,則a//M或aM,即②錯(cuò)誤;
對(duì)于③,若a⊥c,b⊥c,則a//b或與相交或與異面,即③錯(cuò)誤;
對(duì)于④,若a//c,b//c,由空間直線(xiàn)平行的傳遞性可得a//b,即④正確,
即正確命題的個(gè)數(shù)有1個(gè),
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設(shè)g(x)=log4,若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2x-.
(1)若f(x)=,求x的值;
(2)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢(xún)問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如表的列聯(lián)表:
男 | 女 | 總計(jì) | |
愛(ài)好 | 40 | 20 | 60 |
不愛(ài)好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
算得,.見(jiàn)附表:參照附表,得到的正確結(jié)論是( )
A. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)C的極坐標(biāo)方程為ρ﹣4cosθ+3ρsin2θ=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l過(guò)點(diǎn)M(1,0),傾斜角為.
(Ⅰ)求曲線(xiàn)C的直角坐標(biāo)方程與直線(xiàn)l的參數(shù)方程;
(Ⅱ)若曲線(xiàn)C經(jīng)過(guò)伸縮變換后得到曲線(xiàn)C′,且直線(xiàn)l與曲線(xiàn)C′交于A,B兩點(diǎn),求|MA|+|MB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)高鐵的快速發(fā)展給群眾出行帶來(lái)巨大便利,極大促進(jìn)了區(qū)域經(jīng)濟(jì)社會(huì)發(fā)展.已知某條高鐵線(xiàn)路通車(chē)后,發(fā)車(chē)時(shí)間間隔(單位:分鐘)滿(mǎn)足,經(jīng)測(cè)算,高鐵的載客量與發(fā)車(chē)時(shí)間間隔相關(guān):當(dāng)時(shí)高鐵為滿(mǎn)載狀態(tài),載客量為人;當(dāng)時(shí),載客量會(huì)在滿(mǎn)載基礎(chǔ)上減少,減少的人數(shù)與成正比,且發(fā)車(chē)時(shí)間間隔為分鐘時(shí)的載客量為人.記發(fā)車(chē)間隔為分鐘時(shí),高鐵載客量為.
求的表達(dá)式;
若該線(xiàn)路發(fā)車(chē)時(shí)間間隔為分鐘時(shí)的凈收益(元),當(dāng)發(fā)車(chē)時(shí)間間隔為多少時(shí),單位時(shí)間的凈收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象頂點(diǎn)為,且圖象在軸上截得的線(xiàn)段長(zhǎng)為8.
(1)求函數(shù)的解析式;
(2)令.
(。┣蠛瘮(shù)在上的最小值;
(ⅱ)若時(shí),不等式恒成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性.
(2)解關(guān)于t不等式f(x-t)+f(x2-2t)≥0對(duì)一切實(shí)數(shù)x都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著節(jié)能減排意識(shí)深入人心,共享單車(chē)在各大城市大范圍推廣,越來(lái)越多的市民在出行時(shí)喜歡選擇騎行共享單車(chē).為了研究廣大市民在共享單車(chē)上的使用情況,某公司在我市隨機(jī)抽取了100名用戶(hù)進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周使用次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計(jì) | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果用戶(hù)每周使用共享單車(chē)超過(guò)3次,那么認(rèn)為其“喜歡騎行共享單車(chē)”.請(qǐng)完成下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為是否“喜歡騎行共享單車(chē)”與性別有關(guān);
不喜歡騎行共享單車(chē) | 喜歡騎行共享單車(chē) | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(2)每周騎行共享單車(chē)6次及6次以上的用戶(hù)稱(chēng)為“騎行達(dá)人”,將頻率視為概率,在我市所有的“騎行達(dá)人”中隨機(jī)抽取4名,求抽取的這4名“騎車(chē)達(dá)人”中,既有男性又有女性的概率.
附表及公式:,其中;
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com