如圖E、F是以線段BC為公共弦的兩條圓弧的中點(diǎn),BC=6.點(diǎn)A、D分別為線段EF、BC上的動(dòng)點(diǎn).連接AB、AD,設(shè)BD=x,AB2-AD2=y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.
【答案】分析:由圖形及題設(shè)條件中的數(shù)據(jù)知,可延長(zhǎng)EF交BC于O,則AB2=BO2+AO2,AD2=AO2+DO2,兩者作差即可得到y(tǒng)關(guān)于x的解析式,由解析式的類型選擇出函數(shù)的圖象即可
解答:解:由題意如圖可延長(zhǎng)EF交BC于O,E、F是以線段BC為公共弦的兩條圓弧的中點(diǎn)故O是BC中點(diǎn)
AB2=BO2+AO2,AD2=AO2+DO2,
故y=AB2-AD2=BO2-DO2,
又BD=x,BC=6,當(dāng)D在BO上時(shí),DO=3-x;當(dāng)D在OC上時(shí)DO=x-3
故有y=BO2-DO2=,即y=6x-x2,0<x≤6
故選D
點(diǎn)評(píng):本題考查函數(shù)的圖象,解答本題關(guān)鍵是根據(jù)所給的題設(shè)條件建立起函數(shù)關(guān)系式,由于所得的函數(shù)解析式是一個(gè)二次函數(shù)的形式,由二次函數(shù)的性質(zhì)選出函數(shù)的圖象.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖E、F是以線段BC為公共弦的兩條圓弧的中點(diǎn),BC=6.點(diǎn)A、D分別為線段EF、BC上的動(dòng)點(diǎn).連接AB、AD,設(shè)BD=x,AB2-AD2=y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象是(  )
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1:
如圖,點(diǎn)A是以線段BC為直徑的圓O上一點(diǎn),AD⊥BC于點(diǎn)D,過點(diǎn)B作圓O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,點(diǎn)G是AD的中點(diǎn),連接CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
(1)求證:BF=EF;
(2)求證:PA是圓O的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省鄭州大學(xué)附中高三(上)第三次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

選修4-1:
如圖,點(diǎn)A是以線段BC為直徑的圓O上一點(diǎn),AD⊥BC于點(diǎn)D,過點(diǎn)B作圓O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,點(diǎn)G是AD的中點(diǎn),連接CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
(1)求證:BF=EF;
(2)求證:PA是圓O的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南師大附中高三(上)11月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

選修4-1:
如圖,點(diǎn)A是以線段BC為直徑的圓O上一點(diǎn),AD⊥BC于點(diǎn)D,過點(diǎn)B作圓O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,點(diǎn)G是AD的中點(diǎn),連接CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
(1)求證:BF=EF;
(2)求證:PA是圓O的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案