【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:(a>b>0)的焦距為2.
(1)若橢圓C經(jīng)過點(,1),求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)A(﹣2,0),F為橢圓C的左焦點,若橢圓C上存在點P,滿足,求橢圓C的離心率的取值范圍.
【答案】(1)(2)
【解析】
試題(1)由題意得,代入已知點,可得,的方程,解方程即可得到所求的橢圓方程;(2)設(shè),運用兩點的距離公式,化簡整理,即可得到點的軌跡方程,由題意和圓相交的條件,結(jié)合離心率公式,即可得到所求范圍.
試題解析:(1)由題設(shè),橢圓的焦距,即,
所以,
因為橢圓經(jīng)過點,所以,即,
化簡、整理得,解得(負(fù)值已舍去).
故求橢圓的標(biāo)準(zhǔn)方程為.
(2)易知,設(shè),于是.①
因為,即,
所以,即.②
聯(lián)立①②,并注意到,解得.
因為,所以.
于是,即,亦即.
所以,即.
故橢圓的離心率的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年4月1日,新華通訊社發(fā)布:國務(wù)院決定設(shè)立河北雄安新區(qū).消息一出,河北省雄縣、容城、安新3縣及周邊部分區(qū)域迅速成為海內(nèi)外高度關(guān)注的焦點.
(1)為了響應(yīng)國家號召,北京市某高校立即在所屬的8個學(xué)院的教職員工中作了“是否愿意將學(xué)校整體搬遷至雄安新區(qū)”的問卷調(diào)查,8個學(xué)院的調(diào)查人數(shù)及統(tǒng)計數(shù)據(jù)如下:
調(diào)查人數(shù)() | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
愿意整體搬遷人數(shù)() | 8 | 17 | 25 | 31 | 39 | 47 | 55 | 66 |
請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量關(guān)于變量的線性回歸方程保留小數(shù)點后兩位有效數(shù)字);若該校共有教職員工2500人,請預(yù)測該校愿意將學(xué)校整體搬遷至雄安新區(qū)的人數(shù);
(2)若該校的8位院長中有5位院長愿意將學(xué)校整體搬遷至雄安新區(qū),現(xiàn)該校擬在這8位院長中隨機(jī)選取4位院長組成考察團(tuán)赴雄安新區(qū)進(jìn)行實地考察,記為考察團(tuán)中愿意將學(xué)校整體搬遷至雄安新區(qū)的院長人數(shù),求的分布列及數(shù)學(xué)期望.
參考公式及數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一天,甲拿出一個裝有三張卡片的盒子(一張卡片的兩面都是綠色,一張卡片的兩面都是藍(lán)色,還有一張卡片一面是綠色,另一面是藍(lán)色),跟乙說玩一個游戲,規(guī)則是:甲將盒子里的卡片順序打亂后,由乙隨機(jī)抽出一張卡片放在桌子上,然后卡片朝下的面的顏色決定勝負(fù),如果朝下的面的顏色與朝上的面的顏色一致,則甲贏,否則甲輸.乙對游戲的公平性提出了質(zhì)疑,但是甲說:“當(dāng)然公平!你看,如果朝上的面的顏色為綠色,則這張卡片不可能兩面都是藍(lán)色,因此朝下的面要么是綠色,要么是藍(lán)色,因此,你贏的概率為,我贏的概率也是,怎么不公平?”分析這個游戲是否公平.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是某學(xué)生在4月份開始進(jìn)人沖刺復(fù)習(xí)至高考前的5次大型聯(lián)考數(shù)學(xué)成績(分);
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)①請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
②若在4月份開始進(jìn)入沖刺復(fù)習(xí)前,該生的數(shù)學(xué)分?jǐn)?shù)最好為116分,并以此作為初始分?jǐn)?shù),利用上述回歸方程預(yù)測高考的數(shù)學(xué)成績,并以預(yù)測高考成績作為最終成績,求該生4月份后復(fù)習(xí)提高率.(復(fù)習(xí)提高率=,分?jǐn)?shù)取整數(shù))
附:回歸直線的斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若關(guān)于的方程有5個不同的實數(shù)解,則實數(shù)的取值范圍是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有倉,廣三丈,袤四丈五尺,容粟一萬斛,問高幾何?”其意思為:“今有一個長方體(記為)的糧倉,寬3丈(即丈),長4丈5尺,可裝粟一萬斛,問該糧倉的高是多少?”已知1斛粟的體積為2.7立方尺,一丈為10尺,則下列判斷正確的是__________.(填寫所有正確結(jié)論的編號)
①該糧倉的高是2丈;
②異面直線與所成角的正弦值為;
③長方體的外接球的表面積為平方丈.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域為,且對任意,有,且當(dāng)時,,
(Ⅰ)證明是奇函數(shù);
(Ⅱ)證明在上是減函數(shù);
(III)若,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入(單位:萬元)滿足,乙城市收益Q與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).
(1)當(dāng)甲城市投資50萬元時,求此時公司總收益;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com