已知函數(shù)
(1)討論的單調(diào)性.
(2)證明:,e為自然對(duì)數(shù)的底數(shù))

詳見(jiàn)解析

解析試題分析:(1),首先討論時(shí)的單調(diào)性,時(shí),,由的正負(fù),確定討論的范圍,;
(2)時(shí),時(shí),將,然后累加得到所證結(jié)果.
(1)a=0時(shí)
(2)時(shí),
(3)1<a<0時(shí),

由(1)知a=1時(shí),在R上遞減.


  ,    


考點(diǎn):1.利用導(dǎo)數(shù)討論單調(diào)性;2.不等式的證明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中.
(1)討論的單調(diào)性;
(2) 若不等式恒成立,求實(shí)數(shù)取值范圍;
(3)若方程存在兩個(gè)異號(hào)實(shí)根,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中.
(1)是否存在實(shí)數(shù),使得函數(shù)上單調(diào)遞增?若存在,求出的值或取值范圍;否則,請(qǐng)說(shuō)明理由.
(2)若a<0,且函數(shù)y=f(x)的極小值為,求函數(shù)的極大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)(為常數(shù),是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中的導(dǎo)函數(shù).證明:對(duì)任意

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),曲線在點(diǎn)處的切線方程為。
(1)求的值;
(2)如果當(dāng),且時(shí),,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x3-ax+1.
(1)求x=1時(shí),f(x)取得極值,求a的值;
(2)求f(x)在[0,1]上的最小值;
(3)若對(duì)任意m∈R,直線y=-x+m都不是曲線y=f(x)的切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)試判斷函數(shù)的單調(diào)性,并說(shuō)明理由;
(2)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng) 時(shí),求處的切線方程;
(2)設(shè)函數(shù)
(。┤艉瘮(shù)有且僅有一個(gè)零點(diǎn)時(shí),求的值;
(ⅱ)在(。┑臈l件下,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案