已知函數(shù)
(1)當(dāng),且時,求證:
(2)是否存在實數(shù),使得函數(shù)的定義域、值域都是?若存在,則求出的值,若不存在,請說明理由.
(1)證明見解析;(2)不存在,理由見解析.
【解析】
試題分析:(1)分時和時,根據(jù)絕對值的性質(zhì),可根據(jù)絕對值的定義,可將函數(shù)的解析式化為分段函數(shù)的形式,進而分析函數(shù)的單調(diào)性,結(jié)合函數(shù)的單調(diào)性證得結(jié)論
(2)根據(jù)(1)中結(jié)論,分①當(dāng)、時,②當(dāng)、時,③當(dāng)、時,三種情況討論、的存在性,最后綜合討論結(jié)果,可得答案.
試題解析:(1),,
所以在(0,1)內(nèi)遞減,在(1,+)內(nèi)遞增.
由,且,即.
(2)不存在滿足條件的實數(shù).
①當(dāng)時,在(0,1)內(nèi)遞減,
,所以不存在.
②當(dāng)時,在(1,+)內(nèi)遞增,
是方程的根.
而方程無實根.所以不存在.
③當(dāng)時,在(a,1)內(nèi)遞減,在(1,b)內(nèi)遞增,所以,
由題意知,所以不存在.
考點:1.帶絕對值的函數(shù);2.分段函數(shù).
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省益陽市高三第九次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(1)當(dāng)=時,求曲線在點(,)處的切線方程。
(2) 若函數(shù)在(1,)上是減函數(shù),求實數(shù)的取值范圍;
(3)是否存在實數(shù)若不存在,說明理由。若存在,求出的值,并加以證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省金華十校高三上學(xué)期期末考試文科數(shù)學(xué)(解析版) 題型:解答題
(本小題滿分15分)
已知函數(shù)
(1)當(dāng)a=1時,求函數(shù)在點(1,-2)處的切線方程;
(2)若函數(shù)在上的圖象與直線總有兩個不同交點,求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三第一次模擬考試文科數(shù)學(xué) 題型:解答題
(本小題滿分14分)
已知函數(shù)
(1)當(dāng)a=1時,求在區(qū)間[1,e]上的最大值和最小值;
(2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三第二次月考理科數(shù)學(xué)試卷 題型:解答題
已知函數(shù).
(1)當(dāng)且,時,試用含的式子表示,并討論的單調(diào)區(qū)間;
(2)若有零點,,且對函數(shù)定義域內(nèi)一切滿足的實數(shù)有.
①求的表達式;
②當(dāng)時,求函數(shù)的圖象與函數(shù)的圖象的交點坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河北省高一上學(xué)期期中數(shù)學(xué)試卷 題型:解答題
已知函數(shù)
(1)當(dāng),且時,求證:
(2)是否存在實數(shù),使得函數(shù)的定義域、值域都是?若存在,則求出的值,若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com