((本小題滿分12分)
在邊長為5的菱形ABCD中,AC=8,F(xiàn)沿對角線BD把△ABD折起,折起后使∠ADC的余弦值為
(I)求證:平面ABD⊥平面CBD;
(II)若M是AB的中點,求折起后AC與平面MCD所成角的一個三角函數(shù)值.
(Ⅰ)證明:菱形中,記交點為, ,     
翻折后變成三棱椎,在△中,


=
在△中,,
∴∠=90°,即,又,=
⊥平面, ………………………4分
平面,∴平面⊥平面.    
(Ⅱ)解:由(Ⅰ)知,,兩兩互相垂直,分別以,, 所在直線為坐標(biāo)軸建系,
 (0,0,4),(0,-3,0),(4,0,0) ,(0,3,0) ,(0,-,2),
,,…………………………………8分
設(shè)平面的一個法向量為,則由
 ,得 ,…10分 令y=4,有 ……10分
設(shè)與平面所成角為θ,

與平面所成角的正弦值為, …………………………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直二面角D—AB—E中,四邊形ABCD是邊長為2的正方形,AE=EB,點F在CE上,且平面ACE。

(I)求證:平面BCE;
(II)求二面角B—AC—E的正弦值;
(III)求點D到平面ACE的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在三棱柱ABCA1B1C1中,側(cè)AA1B1B是邊長為2的正方形,點C在平面AA1B1B上的射影H恰好為A1B的中點,且CH=,設(shè)D中點,

(Ⅰ)求證:平面;
(Ⅱ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知某幾何體的正視圖、側(cè)視圖都是直角三角形,俯視圖是矩形(尺寸如圖所示).
 
(1)在所給提示圖中,作出該幾何體的直觀圖;
(2)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖:已知△PAB所在的平面與菱形ABCD所在的平面垂直,且PA=PB=AB,∠ABC=60°,E為AB的中點.        

(Ⅰ)證明:CE⊥PA;
(Ⅱ)若F為線段PD上的點,且EF與平面PEC的
夾角為45°,求平面EFC與平面PBC夾角的
余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(12分)
如圖,已知四棱錐的底面為矩形,平面分別為的中點.

(Ⅰ)求證:;
(Ⅱ)求二面角的大小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

    (本小題滿分12分)
如圖,四邊形ABCD為正方形,四邊形BDEF為矩形,AB=2BF,E丄平面ABCD,G為EF中點.

(1)求證:CF//平面
(2) 求證:平面ASG丄平面CDG;
(3)求二面角C—FG—B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖,在三棱錐中,已知點、、分別為棱、、的中點.

(Ⅰ)求證:∥平面;
(Ⅱ)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

( (本小題滿分12分)

在四棱錐P-ABCD中,底面ABCD是矩形,PA=AD=4,AB=2,
PB=2,PD=4,E是PD的中點
(1)求證:AE⊥平面PCD;
(2)若F是線段BC的中點,求三棱錐F-ACE的體積。

查看答案和解析>>

同步練習(xí)冊答案