(2013•菏澤二模)已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4).若λ為實數(shù),(
b
a
)⊥
c
,則λ=( 。
分析:由向量的運算可得
b
a
的坐標,由向量的垂直可得關(guān)于λ的方程,解之可得答案.
解答:解:由題意可知:
b
a
=(1,0)+λ(1,2)=(1+λ,2λ)
由(
b
a
)⊥
c
可得:3(1+λ)+4×2λ=0,
解之可得λ=-
3
11

故選A
點評:本題考查平面向量數(shù)量積的運算以及向量的垂直與數(shù)量積的關(guān)系,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•菏澤二模)已知x,y滿足線性約束條件
x-y+1≥0
x+y-2≤0
x+4y+1≥0
,若
a
=(x,-2),
b
=(1,y),則Z=
a
b
的最大值是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•菏澤二模)已知直線l1:x+(a-2)y-2=0,l2:(a-2)x+ay-1=0,則“a=-1”是“l(fā)1⊥l2”的(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•菏澤二模)設(shè)z=1-i(i是虛數(shù)單位),則
2
z
+
.
z
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•菏澤二模)已知三個數(shù)2,m,8構(gòu)成一個等比數(shù)列,則圓錐曲線
x2
m
+
y2
2
=1
的離心率為( 。

查看答案和解析>>

同步練習冊答案