【題目】如圖,在三棱柱中,側(cè)面底面,,分別為棱的中點(diǎn)

(1)求三棱柱的體積;

(2)在直線上是否存在一點(diǎn),使得平面?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.

【答案】(1);(2).

【解析】試題分析:(1)第(1)問(wèn),先證明底面ABC,計(jì)算出△ABC的面積,再利用柱體的體積公式求三棱柱的體積.(2)第(2)問(wèn),先假設(shè)在直線上存在點(diǎn)P,使得CP||平面AEF,再找到點(diǎn)P的位置,再求AP的長(zhǎng).

試題解析:

1三棱柱中,所以.

因?yàn)?/span>,所以.

又因?yàn)?/span>,

連接 ,所以△是邊長(zhǎng)為2的正三角形.

因?yàn)?/span>E是棱的中點(diǎn),所以,且

,所以

又側(cè)面底面ABC,且側(cè)面底面ABC=AB,

又AE側(cè)面,所以底面ABC,

所以三棱柱的體積為

;

2在直線上存在點(diǎn)P,使得CP||平面AEF.

證明如下:連接并延長(zhǎng),與的延長(zhǎng)線相交設(shè)交點(diǎn)為.連接.

因?yàn)?/span>,故

由于為棱的中點(diǎn),所以,故有

為棱的中點(diǎn),的中位線,所以

平面AEF,平面AEF, 所以平面AEF.

故在直線上存在點(diǎn)P使得平面AEF.

此時(shí),所以 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】質(zhì)檢部門(mén)對(duì)某工廠甲、乙兩個(gè)車(chē)間生產(chǎn)的個(gè)零件質(zhì)量進(jìn)行檢測(cè).甲、乙兩個(gè)車(chē)間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過(guò)克的為合格.

(1)質(zhì)檢部門(mén)從甲車(chē)間個(gè)零件中隨機(jī)抽取件進(jìn)行檢測(cè),若至少件合格,檢測(cè)即可通過(guò),若至少件合格,檢測(cè)即為良好,求甲車(chē)間在這次檢測(cè)通過(guò)的條件下,獲得檢測(cè)良好的概率;

(2)若從甲、乙兩車(chē)間個(gè)零件中隨機(jī)抽取個(gè)零件,用表示乙車(chē)間的零件個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),圓.

1)若直線過(guò)點(diǎn)且到圓心的距離為,求直線的方程;

2)設(shè)過(guò)點(diǎn)的直線與圓交于、兩點(diǎn)(的斜率為負(fù)),當(dāng)時(shí),求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體是由棱臺(tái)和棱錐拼接而成的組合體,其底面四邊形是邊長(zhǎng)為2的菱形,平面.

(1)求證:;

(2)求平面與平面所成銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,直線,直線.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.

(1)求直線的直角坐標(biāo)方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于,兩點(diǎn),直線與曲線交于,兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù)且.

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),,若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)z1是虛數(shù),z2z1是實(shí)數(shù),且﹣1≤z2≤1

1)求|z1|的值以及z1的實(shí)部的取值范圍;

2)若ω,求證ω為純虛數(shù);

3)求z2ω2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司近年來(lái)特別注重創(chuàng)新產(chǎn)品的研發(fā),為了研究年研發(fā)經(jīng)費(fèi)(單位:萬(wàn)元)對(duì)年創(chuàng)新產(chǎn)品銷(xiāo)售額(單位:十萬(wàn)元)的影響,對(duì)近10年的研發(fā)經(jīng)費(fèi)與年創(chuàng)新產(chǎn)品銷(xiāo)售額(其中)的數(shù)據(jù)作了初步處理,得到如圖的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

其中,,,,

.現(xiàn)擬定關(guān)于的回歸方程為.

1)求,的值(結(jié)果精確到);

2)根據(jù)擬定的回歸方程,預(yù)測(cè)當(dāng)研發(fā)經(jīng)費(fèi)為萬(wàn)元時(shí),年創(chuàng)新產(chǎn)品銷(xiāo)售額是多少?

參考公式:

求線性回歸方程系數(shù)公式 ,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在即將進(jìn)入休漁期時(shí),某小微企業(yè)決定囤積一些冰鮮產(chǎn)品,銷(xiāo)售所囤積產(chǎn)品的凈利潤(rùn)f(x)萬(wàn)元與投入x萬(wàn)元之間近似滿足函數(shù)關(guān)系:,若投入2萬(wàn)元,可得到凈利潤(rùn)為5.2萬(wàn)元.

(1)試求該小微企業(yè)投入多少萬(wàn)元時(shí),獲得的凈利潤(rùn)最大;

(2)請(qǐng)判斷該小微企業(yè)是否會(huì)虧本,若虧本,求出投入資金的范圍,若不虧本,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):ln 2≈0.7,ln 15≈2.7)

查看答案和解析>>

同步練習(xí)冊(cè)答案