【題目】己知,分別為橢圓C:的左、右焦點,點在橢圓C上.
(1)求的最小值;
(2)已知直線l:與橢圓C交于兩點A、B,過點且平行于直線l的直線交橢圓C于另一點Q,問:四邊形PABQ能否成為平行四邊形?若能,請求出直線l的方程;若不能,請說明理由.
【答案】(1)1 (2)
【解析】
(1)由題意,求得向量的坐標,利用向量的數(shù)量積的運算的到關于的表示,即可求解.
(2)直線與曲線聯(lián)立方程組,求得,利用弦長公式求得,再由,得出的方程,與橢圓的方程聯(lián)立方程組,利用弦長公式得到,再由平行四邊形的性質(zhì),即可求解.
解:(1)由題意可知,,,
,,
,
最小值1.
2)已知
由直線與橢圓聯(lián)立得,,
由韋達定理可知:,.
由弦長公式可知丨AB丨,
,,
直線PQ的方程為.
將PQ的方程代入橢圓方程可知:,
,
,
丨PQ丨丨丨,
若四邊形PABQ成為平行四邊形,則丨AB丨丨PQ丨,
丨丨,解得.
故符合條件的直線l的方程為,即.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R恒有f(x+1)=f(x﹣1),已知當x∈[0,1]時,f(x)=( )1﹣x , 則
①2是函數(shù)f(x)的一個周期;
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0;
④x=1是函數(shù)f(x)的一個對稱軸;
⑤當x∈(3,4)時,f(x)=( )x﹣3 .
其中所有正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+ )(ω>0),將函數(shù)y=f(x)的圖象向右平移 個單位長度后,所得圖象與原函數(shù)圖象重合ω最小值等于 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P ABCD中,E是棱PC上一點,且2,底面ABCD是邊長為2的正方形,△PAD為正三角形,平面ABE與棱PD交于點F,平面PCD與平面PAB交于直線l,且平面PAD⊥平面ABCD.
(1)求證:l∥EF;
(2)求四棱錐P-ABEF的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為An , 對任意n∈N*滿足 ﹣ = ,且a1=1,數(shù)列{bn}滿足bn+2﹣2bn+1+bn=0(n∈N*),b3=5,其前9項和為63.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)令cn= + ,數(shù)列{cn}的前n項和為Tn , 若對任意正整數(shù)n,都有Tn≥2n+a,求實數(shù)a的取值范圍;
(3)將數(shù)列{an},{bn}的項按照“當n為奇數(shù)時,an放在前面;當n為偶數(shù)時,bn放在前面”的要求進行“交叉排列”,得到一個新的數(shù)列:a1 , b1 , b2 , a2 , a3 , b3 , b4 , a4 , a5 , b5 , b6 , …,求這個新數(shù)列的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的四棱錐S﹣ABCD中,SA⊥底面ABCD,∠DAB=∠ABC=90°,SA=AB=BC=a,AD=3a(a>0),E為線段BS上的一個動點.
(1)證明:DE和SC不可能垂直;
(2)當點E為線段BS的三等分點(靠近B)時,求二面角S﹣CD﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f′(x)是函數(shù)f(x)的導函數(shù),且f′(x)>2f(x)(x∈R),f()=e(e為自然對數(shù)的底數(shù)),則不等式f(lnx)<x2的解集為( 。
A.(0,)
B.(0,)
C.( , )
D.( , )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(1)=0,當x<0時,xf′(x)+f(x)>0,則使得f(x)<0成立的x的取值范圍是( 。
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com