【題目】某社區(qū)為了解居民參加體育鍛煉情況,隨機抽取18名男性居民,12名女性居民對他們參加體育鍛煉的情況進行問卷調(diào)查.現(xiàn)按參加體育鍛煉的情況將居民分成3類:甲類(不參加體育鍛煉),乙類(參加體育鍛煉,但平均每周參加體育鍛煉的時間不超過5個小時),丙類(參加體育鍛煉,且平均每周參加體育鍛煉的時間超過5個小時),調(diào)查結(jié)果如下表:

(1)根據(jù)表中的統(tǒng)計數(shù)據(jù),完成下面列聯(lián)表,并判斷是否有的把握認為參加體育鍛煉與性別有關?

(2)從抽出的女性居民中再隨機抽取3人進一步了解情況,記為抽取的這3名女性居民中甲類和丙類人數(shù)差的絕對值,求的數(shù)學期望.

附:

【答案】(1) 有;(2).

【解析】

1)根據(jù)數(shù)據(jù)填寫列聯(lián)表,代入公式得,對照數(shù)據(jù)確定把握率,(2)先確定隨機變量取法,再分別求對應概率,最后根據(jù)期望公式得期望.

(1)

.

∴有90%的把握認為參加體育鍛煉與性別有關.

(2)的所有可能取值為0,1,2,3

,

,

的分布列為:

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知AB為圓O的直徑,且,點D為線段AO的中點,點C為圓O上的一點,且,平面ABC.

1)求證:平面PAB.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的左、右焦點分別是,,離心率為,過且垂直于軸的直線被橢圓截得的線段長為1

(1)求橢圓的方程;

(2)點是橢圓上除長軸端點外的任一點,連接,,設的角平分線的長軸于點,求的取值范圍;

(3)在(2)的條件下,過點作斜率為的直線,使得與橢圓有且只有一個公共點,設直線,的斜率分別為,若,證明為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在直角梯形ABCD中,AB//CD,ABBCAB=3BE=3,CD=2,AD=2.將△ADE沿DE折起,使平面ADE⊥平面BCDE.

(1)證明:BC⊥平面ACD;

(2)求直線AE與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)在區(qū)間(其中,是自然對數(shù)的底數(shù))上的最小值;

(2)若存在與函數(shù),的圖象都相切的直線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(I)若,判斷上的單調(diào)性;

(Ⅱ)求函數(shù)上的最小值;

(III)當時,是否存在正整數(shù)n,使恒成立?若存在,求出n的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某校學生參加社區(qū)服務的情況,采用按性別分層抽樣的方法進行調(diào)查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為的樣本,得到一周參加社區(qū)服務的時間的統(tǒng)計數(shù)據(jù)好下表:

超過1小時

不超過1小時

20

8

12

m

(Ⅰ)求;

(Ⅱ)能否有95%的把握認為該校學生一周參加社區(qū)服務時間是否超過1小時與性別有關?

(Ⅲ)以樣本中學生參加社區(qū)服務時間超過1小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學生中隨機調(diào)查6名學生,試估計6名學生中一周參加社區(qū)服務時間超過1小時的人數(shù).

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正三棱柱的底面邊長為,的中點,平面與平面所成的銳二面角的正切值是,則四棱錐外接球的表面積為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】蘋果是人們?nèi)粘I钪谐R姷臓I養(yǎng)型水果.某地水果批發(fā)市場銷售來自5個不同產(chǎn)地的富士蘋果,各產(chǎn)地的包裝規(guī)格相同,它們的批發(fā)價格(元/箱)和市場份額如下:

產(chǎn)地

批發(fā)價格

市場份額

市場份額亦稱“市場占有率”.指某一產(chǎn)品的銷售量在市場同類產(chǎn)品中所占比重.

(1)從該地批發(fā)市場銷售的富士蘋果中隨機抽取一箱,求該箱蘋果價格低于元的概率;

(2)按市場份額進行分層抽樣,隨機抽取箱富士蘋果進行檢驗,

①從產(chǎn)地共抽取箱,求的值;

②從這箱蘋果中隨機抽取兩箱進行等級檢驗,求兩箱產(chǎn)地不同的概率;

(3)由于受種植規(guī)模和蘋果品質(zhì)的影響,預計明年產(chǎn)地的市場份額將增加,產(chǎn)地的市場份額將減少,其它產(chǎn)地的市場份額不變,蘋果銷售價格也不變(不考慮其它因素).設今年蘋果的平均批發(fā)價為每箱元,明年蘋果的平均批發(fā)價為每箱元,比較的大小.(只需寫出結(jié)論)

查看答案和解析>>

同步練習冊答案