函數(shù)
的最小值是
.
試題分析:將函數(shù)整理得:
,當且僅當
,故最小值為
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
都是正數(shù),
(1)若
,求
的最大值
(2)若
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,某小區(qū)擬在空地上建一個占地面積為2400平方米的矩形休閑廣場,按照設計要求,休閑廣場中間有兩個完全相同的矩形綠化區(qū)域,周邊及綠化區(qū)域之間是道路(圖中陰影部分),道路的寬度均為2米.怎樣設計矩形休閑廣場的長和寬,才能使綠化區(qū)域的總面積最大?并求出其最大面積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
a>0,
b>0,若不等式
≥
恒成立,則
m的最大值為( ).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
,且
,求
的最小值.某同學做如下解答:
因為
,所以
┄①,
┄②,
①
②得
,所以
的最小值為24.
判斷該同學解答是否正確,若不正確,請在以下空格內(nèi)填寫正確的最小值;若正確,請在以下空格內(nèi)填寫取得最小值時
、
的值.
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若
且
,使不等式
≥
恒成立,則實數(shù)
的取值范圍為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
,則
的最小值為
.
查看答案和解析>>