(12分)已知函數(shù)是定義在上的偶函數(shù),已知當時,.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求在區(qū)間上的值域。

(1)
(2)函數(shù)的單調(diào)遞增區(qū)間為
(3)值域為(

解析試題分析:解:(1)∵函數(shù)是定義在上的偶函數(shù)
∴對任意的都有成立
∴當時,

      4分
(2)圖形如圖所示,函數(shù)的單調(diào)遞增區(qū)間為.(寫成開區(qū)間也可以)8分

(3)值域為(     12分
考點:函數(shù)的單調(diào)性和解析式的運用
點評:解決該試題的關(guān)鍵是利用二次函數(shù)的性質(zhì),以及奇偶性來分析得到函數(shù)的解析式,并求解單調(diào)性,屬于基礎(chǔ)題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)的圖象如圖所示,且與軸相切于原點,若函數(shù)的極小值為-4.

(1)求的值;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù),的兩個極值點為,線段的中點為.
(1) 如果函數(shù)為奇函數(shù),求實數(shù)的值;當時,求函數(shù)圖象的對稱中心;
(2) 如果點在第四象限,求實數(shù)的范圍;
(3) 證明:點也在函數(shù)的圖象上,且為函數(shù)圖象的對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)
已知函數(shù)的圖象關(guān)于原點對稱,且.
(1)求函數(shù)的解析式;
(2)若在[-1,1]上是增函數(shù),求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共12分)
已知函數(shù),
(1)若對于定義域內(nèi)的恒成立,求實數(shù)的取值范圍;
(2)設(shè)有兩個極值點,,求證:
(3)設(shè)若對任意的,總存在,使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,是方程的兩根, 數(shù)列是公差為正的等差數(shù)列,數(shù)列的前項和為,且.
(1)求數(shù)列,的通項公式;
(2)記=,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù).
(Ⅰ)函數(shù)在區(qū)間上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(Ⅱ)當時,恒成立,求整數(shù)的最大值;
(Ⅲ)試證明:)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù):.
(1) 當時①求的單調(diào)區(qū)間;
②設(shè),若對任意,存在,使,求實數(shù)取值范圍.
(2) 當時,恒有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知函數(shù)是定義在上的奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的值域;
(Ⅲ)當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案