20、已知m<n,試寫(xiě)出一個(gè)一元二次不等式ax2+bx+c>0,使它的解集為(-∞,m)∪(n,+∞),這樣的不等式是否唯一?要使不等式能唯一被確立,需添加什么條件?
分析:一元二次不等式ax2+bx+c>0的解集為(-∞,m)∪(n,+∞),所以可以得到ax2+bx+c=a(x-m)(x-n),因?yàn)閍的值無(wú)法確定所以不等式不能唯一確定,所以還需要加關(guān)于a的值的有關(guān)條件.
解答:解:∵ax2+bx+c>0的解集是(-∞,m)∪(n,+∞),
∴ax2+bx+c=a(x-m)(x-n)
∴一元二次不等式可以寫(xiě)成:x2-(m+n)x+mn>0
這種不等式并不唯一,要使得不等式唯一還需加a的取值方面的有關(guān)條件.
比如a=1.
點(diǎn)評(píng):本題主要考查一元二次不等式的求解問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20、若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿(mǎn)足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整數(shù),且1≤i≤n),就稱(chēng)該數(shù)列為“對(duì)稱(chēng)數(shù)列”.
(1)已知數(shù)列{bn}是項(xiàng)數(shù)為7的對(duì)稱(chēng)數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫(xiě)出{bn}的每一項(xiàng)
(2)已知{cn}是項(xiàng)數(shù)為2k-1(k≥1)的對(duì)稱(chēng)數(shù)列,且ck,ck+1…c2k-1構(gòu)成首項(xiàng)為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項(xiàng)和為S2k-1,則當(dāng)k為何值時(shí),S2k-1取到最大值?最大值為多少?
(3)對(duì)于給定的正整數(shù)m>1,試寫(xiě)出所有項(xiàng)數(shù)不超過(guò)2m的對(duì)稱(chēng)數(shù)列,使得1,2,22…2m-1成為數(shù)列中的連續(xù)項(xiàng);當(dāng)m>1500時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和S2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海高考真題 題型:解答題

若有窮數(shù)列a1,a2,…,an(n是正整數(shù)),滿(mǎn)足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整數(shù),且1≤i≤n),就稱(chēng)該數(shù)列為“對(duì)稱(chēng)數(shù)列”。
(1)已知數(shù)列{bn}是項(xiàng)數(shù)為7的對(duì)稱(chēng)數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫(xiě)出{bn}的每一項(xiàng);
(2)已知{cn}是項(xiàng)數(shù)為2k-1(k≥1)的對(duì)稱(chēng)數(shù)列,且ck,ck+1,…,c2k-1構(gòu)成首項(xiàng)為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項(xiàng)和為S2k-1,則當(dāng)k為何值時(shí),S2k-1取到最大值?最大值為多少?
(3)對(duì)于給定的正整數(shù)m>1,試寫(xiě)出所有項(xiàng)數(shù)不超過(guò)2m的對(duì)稱(chēng)數(shù)列,使得1,2,22,…,2m-1成為數(shù)列中的連續(xù)項(xiàng);當(dāng)m>1500時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和S2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年山東省臨沂市臨沭一中高二(上)月考數(shù)學(xué)試卷(解析版) 題型:解答題

若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿(mǎn)足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整數(shù),且1≤i≤n),就稱(chēng)該數(shù)列為“對(duì)稱(chēng)數(shù)列”.
(1)已知數(shù)列{bn}是項(xiàng)數(shù)為7的對(duì)稱(chēng)數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫(xiě)出{bn}的每一項(xiàng)
(2)已知{cn}是項(xiàng)數(shù)為2k-1(k≥1)的對(duì)稱(chēng)數(shù)列,且ck,ck+1…c2k-1構(gòu)成首項(xiàng)為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項(xiàng)和為S2k-1,則當(dāng)k為何值時(shí),S2k-1取到最大值?最大值為多少?
(3)對(duì)于給定的正整數(shù)m>1,試寫(xiě)出所有項(xiàng)數(shù)不超過(guò)2m的對(duì)稱(chēng)數(shù)列,使得1,2,22…2m-1成為數(shù)列中的連續(xù)項(xiàng);當(dāng)m>1500時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和S2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省無(wú)錫市江陰市成化高級(jí)中學(xué)高考數(shù)學(xué)模擬試卷(18)(解析版) 題型:解答題

若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿(mǎn)足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整數(shù),且1≤i≤n),就稱(chēng)該數(shù)列為“對(duì)稱(chēng)數(shù)列”.
(1)已知數(shù)列{bn}是項(xiàng)數(shù)為7的對(duì)稱(chēng)數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫(xiě)出{bn}的每一項(xiàng)
(2)已知{cn}是項(xiàng)數(shù)為2k-1(k≥1)的對(duì)稱(chēng)數(shù)列,且ck,ck+1…c2k-1構(gòu)成首項(xiàng)為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項(xiàng)和為S2k-1,則當(dāng)k為何值時(shí),S2k-1取到最大值?最大值為多少?
(3)對(duì)于給定的正整數(shù)m>1,試寫(xiě)出所有項(xiàng)數(shù)不超過(guò)2m的對(duì)稱(chēng)數(shù)列,使得1,2,22…2m-1成為數(shù)列中的連續(xù)項(xiàng);當(dāng)m>1500時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和S2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年上海市高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿(mǎn)足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整數(shù),且1≤i≤n),就稱(chēng)該數(shù)列為“對(duì)稱(chēng)數(shù)列”.
(1)已知數(shù)列{bn}是項(xiàng)數(shù)為7的對(duì)稱(chēng)數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫(xiě)出{bn}的每一項(xiàng)
(2)已知{cn}是項(xiàng)數(shù)為2k-1(k≥1)的對(duì)稱(chēng)數(shù)列,且ck,ck+1…c2k-1構(gòu)成首項(xiàng)為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項(xiàng)和為S2k-1,則當(dāng)k為何值時(shí),S2k-1取到最大值?最大值為多少?
(3)對(duì)于給定的正整數(shù)m>1,試寫(xiě)出所有項(xiàng)數(shù)不超過(guò)2m的對(duì)稱(chēng)數(shù)列,使得1,2,22…2m-1成為數(shù)列中的連續(xù)項(xiàng);當(dāng)m>1500時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和S2008

查看答案和解析>>

同步練習(xí)冊(cè)答案