【題目】在正方體ABCD﹣A1B1C1D1中,AD1與BD所成的角是

【答案】60°
【解析】解:如圖,連結(jié)BC1、BD和DC1,

在正方體ABCD﹣A1B1C1D1中,

由AB=D1C1,AB∥D1C1,可知AD1∥BC1,

所以∠DBC1就是異面直線AD1與BD所成角,

在正方體ABCD﹣A1B1C1D1中,BC1、BD和DC1是其三個(gè)面上的對(duì)角線,它們相等.

所以△DBC1是正三角形,∠DBC1=60°

故異面直線AD1與BD所成角的大小為60°.

所以答案是60°.

【考點(diǎn)精析】通過靈活運(yùn)用異面直線及其所成的角,掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)若 ,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若x=﹣1是函數(shù)y=f(x)的一個(gè)極值點(diǎn),試判斷此時(shí)函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan= (n≥1,n∈Z)
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)求數(shù)列{n2an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果圓(x﹣a)2+(y﹣a)2=8上總存在到原點(diǎn)的距離為 的點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(﹣3,﹣1)∪(1,3)
B.(﹣3,3)
C.[﹣1,1]
D.[﹣3,﹣1]∪[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC為等邊三角形,AA1=AB=6,D為AC的中點(diǎn).

(1)求證:直線AB1∥平面BC1D;
(2)求證:平面BC1D⊥平面ACC1A1;
(3)求三棱錐C﹣BC1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 若{an}和 都是等差數(shù)列,且公差相等.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn= ,cn=bnbn+1 , 求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是( )
A.一條直線與一個(gè)平面平行,它就和這個(gè)平面內(nèi)的任意一條直線平行
B.平行于同一個(gè)平面的兩條直線平行
C.與兩個(gè)相交平面的交線平行的直線,必平行于這兩個(gè)平面
D.平面外兩條平行直線中的一條與這個(gè)平面平行,則另一條也與這個(gè)平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小五、小一、小節(jié)、小快、小樂五位同學(xué)站成一排,若小一不出現(xiàn)在首位和末位,小五、小節(jié)、小樂中有且僅有兩人相鄰,求能滿足條件的不同排法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù)y=3cosx的圖象,只需將函數(shù)y=3sin(2x﹣ )的圖象上所有點(diǎn)的( )
A.橫坐標(biāo)縮短到原來的 (縱坐標(biāo)不變),所得圖象再向左平移 個(gè)單位長度
B.橫坐標(biāo)縮短到原來的 (縱坐標(biāo)不變),所得圖象再向右平移 個(gè)單位長度
C.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象再向左平移 個(gè)單位長度
D.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象再向右平移 個(gè)單位長度

查看答案和解析>>

同步練習(xí)冊(cè)答案