9.已知線段AB上有9個確定的點(包括端點A與B).現(xiàn)對這些點進(jìn)行往返標(biāo)數(shù)(從A→B→A→B→…進(jìn)行標(biāo)數(shù),遇到同方向點不夠數(shù)時就“調(diào)頭”往回數(shù)).如圖:在點A上標(biāo)1稱為點1,然后從點1開始數(shù)到第二個數(shù),標(biāo)上2,稱為點2,再從點2開始數(shù)到第三個數(shù),標(biāo)上3,稱為點3(標(biāo)上數(shù)n的點稱為點n),…,這樣一直繼續(xù)下去,直到1,2,3,…,2013都被標(biāo)記到點上.則點2013上的所有標(biāo)記的數(shù)中,最小的是2.

分析 確定標(biāo)有2013的是1+2+3+…+2013=2027091號,2027091除以16的余數(shù)為3,即線段的第3個點標(biāo)為2013,那么3+16n=1+2+3+…+k=$\frac{k(k+1)}{2}$,即3+32n=k(k+1),令n=0,即可得結(jié)論.

解答 解:記標(biāo)有1為第1號,由于對這些點進(jìn)行往返標(biāo)數(shù)(從A→B→A→B→…進(jìn)行標(biāo)數(shù),遇到同方向點不夠數(shù)時就“調(diào)頭”往回數(shù)),則標(biāo)有2的是1+2號,標(biāo)有3的是1+2+3號,標(biāo)有4的是1+2+3+4,…,標(biāo)有2013的是1+2+3+…+2013=2027091號.考慮為一圓周,則圓周上共16個點,
所以2027091除以16的余數(shù)為3,即線段的第3個點標(biāo)為2013,那么3+16n=1+2+3+…+k=$\frac{k(k+1)}{2}$,
即3+32n=k(k+1).
當(dāng)n=0時,k(k+1)=3,k=2滿足題意,隨著n的增大,k也增大.
所以,標(biāo)有2013的那個點上標(biāo)出的最小數(shù)為2.
故答案為:2.

點評 本題考查合情推理,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中點.
(1)求證:平面PDC⊥平面PAD;
(2)求證:PB∥平面EAC;
(3)求直線EC與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某公司客服中心有四部咨詢電話,某一時刻每部電話能否被接通是相互獨立的.已知每部電話響第一聲時被接通的概率是0.1,響第二聲時被接通的概率是0.3,響第三聲時被接通的概率是0.4,響第四聲時被接通的概率是0.1.假設(shè)有ξ部電話在響四聲內(nèi)能被接通.
(Ⅰ)求四部電話至少有一部在響四聲內(nèi)能被接通的概率;
(Ⅱ)求隨機(jī)變量ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知球的直徑SC=4,A,B是該球球面上的兩點,∠ASC=∠BSC=30°,且AB=$\sqrt{3}$,則三棱錐S-ABC的體積為( 。
A.1B.$\sqrt{3}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+aln(x+1),其中a≠0
(1)若a=-4,求f(x)的極值;
(2)判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)m為常數(shù),拋物線y=x2+2mx-m3-2m2,則當(dāng)m分別取0,-3,-2時,在平面直角坐標(biāo)系中圖象最恰當(dāng)?shù)氖牵ㄟ@里省略了坐標(biāo)軸)( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下列結(jié)論中正確的是②③④.(寫出所有正確結(jié)論的序號)
①若$\overrightarrow a•\overrightarrow b=0$,則$\overrightarrow a=0$或$\overrightarrow b=0$;
②若$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a|•|\overrightarrow b|$,則$\overrightarrow a∥\overrightarrow b$;
③若$\overrightarrow a•\overrightarrow b=0$,則$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$;
④在△ABC中,點M滿足$\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow 0$,若存在實數(shù)λ使得$\overrightarrow{AB}+\overrightarrow{AC}=λ•\overrightarrow{AM}$成立,則λ=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知A${\;}_{n}^{3}$=C${\;}_{n}^{4}$,則n=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠ABC=∠ADC=90°,∠BCD=60°,DC=BC=$\sqrt{3}$,AC和BD交于O點.
(1)求證:平面PBD⊥平面PAC;
(2)當(dāng)點A在平面PBD內(nèi)的射影G恰好是△PBD的重心時,求二面角B-PD-A的大。

查看答案和解析>>

同步練習(xí)冊答案