已知點,點在曲線:上.
(1)若點在第一象限內(nèi),且,求點的坐標(biāo);
(2)求的最小值.
(1);(2).
解析試題分析: (1) 本小題可以通過坐標(biāo)法來處理,首先根據(jù)點在第一象限內(nèi)設(shè)其(),然后根據(jù)兩點間距離公式,再結(jié)合點在曲線:上,聯(lián)立可解得,即點的坐標(biāo)為;
(2) 本小題根據(jù)(1)中所得其中代入可得(),顯然根據(jù)二次函數(shù)可知當(dāng)時,.
試題解析:設(shè)(),
(1)由已知條件得 2分
將代入上式,并變形得,,解得(舍去)或 4分
當(dāng)時,
只有滿足條件,所以點的坐標(biāo)為 6分
(2)其中 7分
() 10分
當(dāng)時, 12分
(不指出,扣1分)
考點:1.坐標(biāo)法;2.二次函數(shù)求最值
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象在點(e為自然對數(shù)的底數(shù))處取得極值-1.
(1)求實數(shù)的值;
(2)若不等式對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某種海洋生物身體的長度(單位:米)與生長年限t(單位:年)
滿足如下的函數(shù)關(guān)系:.(設(shè)該生物出生時t=0)
(1)需經(jīng)過多少時間,該生物的身長超過8米;
(2)該生物出生后第3年和第4年各長了多少米?并據(jù)此判斷,這2年中哪一年長得更快.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若,當(dāng)時,求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當(dāng)時,,求在上的反函數(shù);
(3)對于(2)中的,若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),h(x)=2alnx,.
(1)當(dāng)a∈R時,討論函數(shù)的單調(diào)性;
(2)是否存在實數(shù)a,對任意的,且,都有
恒成立,若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若x=2為的極值點,求實數(shù)a的值;
(2)若在上為增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在一條筆直的工藝流水線上有個工作臺,將工藝流水線用如圖所示的數(shù)軸表示,各工作臺的坐標(biāo)分別為,,,,每個工作臺上有若干名工人.現(xiàn)要在流水線上建一個零件供應(yīng)站,使得各工作臺上的所有工人到供應(yīng)站的距離之和最短.
(Ⅰ)若,每個工作臺上只有一名工人,試確定供應(yīng)站的位置;
(Ⅱ)若,工作臺從左到右的人數(shù)依次為,,,,,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一種放射性元素,最初的質(zhì)量為,按每年衰減.
(1)求年后,這種放射性元素的質(zhì)量與的函數(shù)關(guān)系式;
(2)求這種放射性元素的半衰期(質(zhì)量變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic5/tikupic/99/3/t3b2c1.png" style="vertical-align:middle;" />時所經(jīng)歷的時間).()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com