【題目】下列命題中,是假命題的是( )
A.?x0∈R,sinx0+cosx0=
B.?x0∈R,tanx0=2016
C.?x>0,x>lnx
D.?x∈R,2x>0
【答案】A
【解析】解:sinx+cosx= sin(x+ )∈[﹣ , ], [﹣ , ],
故x0∈R,sinx0+cosx0= 是假命題;
tanx∈R,故x0∈R,tanx0=2016是真命題;
令f(x)=x﹣lnx,則f′(x)=1﹣ ,當(dāng)x∈(0,1)時(shí),f′(x)<0,函數(shù)為減函數(shù),當(dāng)x∈(1,+∞)時(shí),f′(x)>0,函數(shù)為增函數(shù),
故當(dāng)x=1時(shí),f(x)取最小值1,故f(x)=x﹣lnx≥1恒成立,
故x>0,x>lnx是真命題;
指數(shù)函數(shù)的值域?yàn)椋?,+∞),
x∈R,2x>0是真命題;
故選:A.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】敘利亞內(nèi)戰(zhàn)接近尾聲,中國(guó)紅十字會(huì)相應(yīng)國(guó)際號(hào)召,支持?jǐn)⒗麃喨嗣駪?zhàn)后重建,為解決現(xiàn)階段敘利亞人民急需的醫(yī)療保障,現(xiàn)擬從北京某知名醫(yī)院的專(zhuān)職教授的醫(yī)生6人(其中男醫(yī)生3人,女醫(yī)生3人),護(hù)士8人(其中男護(hù)士2人,女護(hù)士6人)中選派醫(yī)生、護(hù)士各三人組成衛(wèi)生醫(yī)療對(duì),要求男醫(yī)生至少兩人,男護(hù)士至少一人,則這樣的選派方案共有__________種.(請(qǐng)用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ax2+bx+1.
(1)若f(x)>0的解集是(﹣1,2),求實(shí)數(shù)a,b的值.
(2)求z=3a﹣b的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正三棱柱ABC﹣A1B1C1中,已知D,E分別為BC,B1C1的中點(diǎn),點(diǎn)F在棱CC1上,且EF⊥C1D.求證:
(1)直線(xiàn)A1E∥平面ADC1;
(2)直線(xiàn)EF⊥平面ADC1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】奇函數(shù)f(x)定義域是(﹣1,0)∪(0,1),f()=0,當(dāng)x>0時(shí),總有(x)f′(x)ln(1﹣x2)>2f(x)成立,則不等式f(x)>0的解集為( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),,表示三條不同的直線(xiàn),,,表示三個(gè)不同的平面,給出下列四個(gè)命題:
①若,則;
②若,是在內(nèi)的射影, ,則;
③若是平面的一條斜線(xiàn),點(diǎn),為過(guò)點(diǎn)的一條動(dòng)直線(xiàn),則可能有且;
④若,則.
其中正確的序號(hào)是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線(xiàn)段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線(xiàn)AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)F1(﹣1,0),F(xiàn)2(1,0),動(dòng)點(diǎn)M到點(diǎn)F2的距離是 ,線(xiàn)段MF1的中垂線(xiàn)交線(xiàn)段MF2于點(diǎn)P. (Ⅰ)當(dāng)點(diǎn)M變化時(shí),求動(dòng)點(diǎn)P的軌跡G的方程;
(Ⅱ)過(guò)點(diǎn)F2且不與x軸重合的直線(xiàn)L與曲線(xiàn)G相交于A,B兩點(diǎn),過(guò)點(diǎn)B作x軸的平行線(xiàn)與直線(xiàn)x=2相交于點(diǎn)C,則直線(xiàn)AC是否恒過(guò)定點(diǎn),若是請(qǐng)求出該定點(diǎn),若不是請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an},an=(2n+m)+(﹣1)n(3n﹣2)(m∈N* , m與n無(wú)關(guān)),若 a2i﹣1≤k2﹣2k﹣1對(duì)一切m∈N*恒成立,則實(shí)數(shù)k的取值范圍為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com