對(duì)于函數(shù),若存在∈R,使成立,則稱為的不動(dòng)點(diǎn).
如果函數(shù)=有且僅有兩個(gè)不動(dòng)點(diǎn)0和2.
(1)試求b、c滿足的關(guān)系式;
(2)若c=2時(shí),各項(xiàng)不為零的數(shù)列{an}滿足4Sn·=1,
求證:<<;
(3)在(2)的條件下, 設(shè)bn=-,為數(shù)列{bn}的前n項(xiàng)和,
求證:.
解: (1)設(shè)
∴
(2)∵c=2 ∴b=2 ∴,
由已知可得2Sn=an-an2……①,且an ≠ 1.
當(dāng)n ≥ 2時(shí),2 Sn -1=an-1-……②,
①-②得(an+an-1)( an-an-1+1)=0,
∴an=-an-1 或 an=-an-1 =-1,
當(dāng)n=1時(shí),2a1=a1-a12 a1=-1,
若an=-an-1,則a2=1與an ≠ 1矛盾.∴an-an-1=-1, ∴an=-n.
∴要證不等式,只要證 ,即證 ,
只要證 ,即證 .
考慮證不等式(x>0) . (**)
令g(x)=x-ln(1+x), h(x)=ln(x+1)- (x>0) .
∴=, =,
∵x>0, ∴>0, >0,∴g(x)、h(x)在(0, +∞)上都是增函數(shù),
∴g(x)>g(0)=0, h(x)>h(0)=0,∴x>0時(shí),.
令則(**)式成立,∴<<,
(3)由(2)知bn=,則Tn=.
在中,令n=1,2,3,,2008,并將各式相加,
得,
即T2009-1<ln2009<T2008.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011屆重慶市萬(wàn)州二中高三12月月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
對(duì)于函數(shù),若存在R,使成立,則稱為的不動(dòng)點(diǎn).如果函數(shù)N*有且僅有兩個(gè)不動(dòng)點(diǎn)0和2,且
(1)求實(shí)數(shù),的值;
(2)已知各項(xiàng)不為零的數(shù)列,并且, 求數(shù)列的通項(xiàng)公式;;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆河南省衛(wèi)輝市第一中學(xué)高三一月月考數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
對(duì)于函數(shù),若存在R,使成立,則稱為的不動(dòng)點(diǎn).如果函數(shù)N*有且僅有兩個(gè)不動(dòng)點(diǎn)0和2,且
(1)求實(shí)數(shù),的值;
(2)已知各項(xiàng)不為零的數(shù)列,并且, 求數(shù)列的通項(xiàng)公式;;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶市高三12月月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
對(duì)于函數(shù),若存在R,使成立,則稱為的不動(dòng)點(diǎn).如果函數(shù)N*有且僅有兩個(gè)不動(dòng)點(diǎn)0和2,且
(1)求實(shí)數(shù),的值;
(2)已知各項(xiàng)不為零的數(shù)列,并且, 求數(shù)列的通項(xiàng)公式;;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省衛(wèi)輝市高三一月月考數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
對(duì)于函數(shù),若存在R,使成立,則稱為的不動(dòng)點(diǎn).如果函數(shù)N*有且僅有兩個(gè)不動(dòng)點(diǎn)0和2,且
(1)求實(shí)數(shù),的值;
(2)已知各項(xiàng)不為零的數(shù)列,并且, 求數(shù)列的通項(xiàng)公式;;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于函數(shù),若存在∈R,使成立,則稱為的不動(dòng)點(diǎn).
如果函數(shù)=有且僅有兩個(gè)不動(dòng)點(diǎn)0和2.
(1)試求b、c滿足的關(guān)系式;
(2)若c=2時(shí),各項(xiàng)不為零的數(shù)列{an}滿足4Sn·=1,
求證:<<;
(3)在(2)的條件下, 設(shè)bn=-,為數(shù)列{bn}的前n項(xiàng)和,
求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com