【題目】如圖,四面體ABCD中,,,二面角的大小為,,.
(1)若,M是BC的中點(diǎn),N在線段DC上,,求證:平面AMN;
(2)當(dāng)BP與平面ACD所成角最大時,求的值.
【答案】(1)見證明;(2)
【解析】
(1)取的中點(diǎn),連接,利用中位線的性質(zhì)以及面面平行的判定定理證得平面平面,由此證得平面.(2)作出直線與平面所成的角,根據(jù)所成角的最大值,求得的值.
(1)取DN的中點(diǎn)E,連接PE、BE.
,,PE、BE是平面AMN外兩條相交直線,
所以平面平面AMN,
所以平面AMN.
(2)作與G,在平面DAC內(nèi)作交AD于H,二面角的平面角為,因?yàn)?/span>,所以H為AD的中點(diǎn),得是正三角形.
易得平面平面DAC,作,則為GH的中點(diǎn),,
連接PI,根據(jù)面面垂直的性質(zhì)定理,有平面.則是BP與平面ACD所成角.在中,,為定值,故當(dāng)時,即最短時,取得最大值,取得最大,在中,,,故,,故.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)),為的導(dǎo)函數(shù),且.
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在處的切線經(jīng)過點(diǎn),求函數(shù)的極值;
(3)若關(guān)于的不等式對于任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列中,,且,,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)記為數(shù)列的前項(xiàng)和,是否存在正整數(shù),使得?若存在,求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩個班級均為 40 人,進(jìn)行一門考試后,按學(xué)生考試成績及格與不及格進(jìn)行統(tǒng)計,甲班及格人數(shù)為 36 人,乙班及格人數(shù)為 24 人.
(1)根據(jù)以上數(shù)據(jù)建立一個22的列聯(lián)表;
(2)試判斷是否成績與班級是否有關(guān)?
參考公式:;
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,分別為的左頂點(diǎn)和上頂點(diǎn),若的中點(diǎn)的縱坐標(biāo)為.分別為的左、右焦點(diǎn).
(1)求橢圓的方程;
(2)設(shè)直線與交于兩點(diǎn),,的重心分別為.若原點(diǎn)在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有四個關(guān)于充要條件的命題:①“向量與非零向量共線”的充要條件是“有且只有一個實(shí)數(shù)使得;②“函數(shù)為偶函數(shù)”的充要條件是“”;③“兩個事件為互斥事件”是“這兩個事件為對立事件”的充要條件;④設(shè),則“"是“為偶函數(shù)”的充分不必要條件.其中,真命題的序號是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某外國語學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎.按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.
(Ⅰ)求的值,并計算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下能否認(rèn)為“獲獎與女生、男生有關(guān)”.
女生 | 男生 | 總計 | |
獲獎 | |||
不獲獎 | |||
總計 | |||
附表及公式:
其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:函數(shù),其中.
(Ⅰ)若是的極值點(diǎn),求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若在上的最大值是,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十五巧板,又稱益智圖,為清朝浙江省德清知縣童葉庚在同治年間所發(fā)明,它能拼出草木、花果、鳥獸、魚蟲、文字等圖案.十五巧板由十五塊板組成一個大正方形(如圖1),其中標(biāo)號為的小板為等腰直角三角形,圖是用十五巧板拼出的2019年生肖豬的圖案,則從生肖豬圖案中任取一點(diǎn),該點(diǎn)恰好取自陰影部分的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com