【題目】下列四個結(jié)論: ①若x>0,則x>sinx恒成立;
②“若am2<bm2 , 則a<b”的逆命題為真命題
m∈R,使f(x)=(m﹣1)x 是冪函數(shù),且在(﹣∞,0)上單調(diào)遞減
④對于命題p:x∈R使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0
其中正確結(jié)論的個數(shù)是(
A.1個
B.2個
C.3個
D.4個

【答案】B
【解析】解:對于①,設(shè)f(x)=x﹣sinx,其中x>0,

∴f′(x)=1﹣cosx≥0,

∴f(x)在(0,+∞)上是單調(diào)增函數(shù);

∴f(x)>f(0)=0,

∴x﹣sinx>0,

∴x>sinx,

即x>0時,x>sinx恒成立,①正確;

對于②,“若am2<bm2,則a<b”的逆命題是:

“若a<b,則am2<bm2”,是假命題,

m=0時命題不成立,∴②錯誤;

對于③,令m﹣1=1,得m=2,此時f(x)=x1是冪函數(shù),

且在(﹣∞,0)上單調(diào)遞減,∴③正確;

對于④,命題p:x∈R使得x2+x+1<0,

則¬p:x∈R,均有x2+x+1≥0,∴④錯誤.

綜上,正確的結(jié)論是①③,共2個.

故選:B.

【考點精析】利用命題的真假判斷與應用對題目進行判斷即可得到答案,需要熟知兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】一幾何體按比例繪制的三視圖如圖所示:

(1)試畫出它的直觀圖;

(2)求它的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均為正實數(shù),且滿足a+b+c=m,求證: + + ≥3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來我國電子商務(wù)行業(yè)迎來發(fā)展的新機遇.2016年618期間,某購物平臺的銷售業(yè)績高達516億人民幣.與此同時,相關(guān)管理部門推出了針對電商的商品和服務(wù)的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.6,對服務(wù)的好評率為0.75,其中對商品和服務(wù)都做出好評的交易為80次.
(Ⅰ)先完成關(guān)于商品和服務(wù)評價的2×2列聯(lián)表,再判斷能否在犯錯誤的概率不超過0.001的前提下,認為商品好評與服務(wù)好評有關(guān)?
(Ⅱ)若將頻率視為概率,某人在該購物平臺上進行的3次購物中,設(shè)對商品和服務(wù)全好評的次數(shù)為隨機變量X:
①求對商品和服務(wù)全好評的次數(shù)X的分布列;
②求X的數(shù)學期望和方差.
附臨界值表:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.897

10.828

K2的觀測值:k= (其中n=a+b+c+d)
關(guān)于商品和服務(wù)評價的2×2列聯(lián)表:

對服務(wù)好評

對服務(wù)不滿意

合計

對商品好評

a=80

對商品不滿意

d=10

合計

n=200

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形中, , 交于點,現(xiàn)將沿折起得到三棱錐 , 分別是, 的中點.

(1)求證: ;

(2)若三棱錐的最大體積為,當三棱錐的體積為,且為銳角時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地上年度電價為0.8元,年用電量為1億千瓦時.本年度計劃將電價調(diào)至0.55元~0.75元之間,經(jīng)測算,若電價調(diào)至x元,則本年度新增用電量y(億千瓦時)與(x﹣0.4)元成反比例.又當x=0.65時,y=0.8.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若每千瓦時電的成本價為0.3元,則電價調(diào)至多少時,本年度電力部門的收益將比上年增加20%?[收益=用電量×(實際電價﹣成本價)].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx,g(x)=0.5x2﹣bx,(b為常數(shù)).
(1)函數(shù)f(x)的圖象在點(1,f(1))處的切線與函數(shù)g(x)的圖象相切,求實數(shù)b的值;
(2)若函數(shù)h(x)=f(x)+g(x)在定義域上不單調(diào),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是某市有關(guān)部門根據(jù)對當?shù)馗刹康脑率杖肭闆r調(diào)查后畫出的樣本頻率分布直方圖,已知圖中從左向右第一組的頻數(shù)為4 000.在樣本中記月收入(單位:元)在[1 000,1 500),[1 500,2 000),[2 000,2 500),[2 500,3 000),[3 000,3 500),[3 500,4 000)的人數(shù)依次為A1,A2,…,A6.是統(tǒng)計月工資收入在一定范圍內(nèi)的人數(shù)的算法流程圖,則樣本的容量n=_____,輸出的S=_____.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|2x+1|﹣|x|﹣2 (Ⅰ)解不等式f(x)≥0
(Ⅱ)若存在實數(shù)x,使得f(x)≤|x|+a,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案