(
x
+
1
x
)n
的展開式中各項系數(shù)和是512,則展開式中常數(shù)項是
 
分析:觀察(
x
+
1
x
)
n
可知,展開式中各項系數(shù)的和為512,即Cn0+Cn1+Cn2++Cnn=512,從而得n,利用二項展開式中的第r+1項,即通項公式Tr+1=cnr
x
n-r
1
x
r,將n代入,并整理,令x的次數(shù)為0,解出r,從而得解.
解答:解:由題意得Cn0+Cn1+Cn2++Cnn=512,
即2n=512,解得n=9.該二項展開式中的第r+1項為 Tr+1=
C
r
8
(
x
)
9-r
(
1
x
)
r
=
C
r
8
x
9-3r
2

9-3r
3
=0
,得r=3,此時,常數(shù)項為T4=C93=84.
故答案為:84.
點評:本題主要考查了二項式定理的應(yīng)用,課本中的典型題目,套用公式解題時,易出現(xiàn)計算錯誤,二項式的考題難度相對較小,注意三基訓(xùn)練.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(x-
1x
)n
的展開式中的第5項為常數(shù)項,那么正整數(shù)n的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二項式(
x
+
1
x
)n
的展開式中各項系數(shù)的和為64.
(I)求n;
(II)求展開式中的常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x+
1
x
)n
的展開式中常數(shù)項等于20,則n等于( 。
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在(x-
1
x
)n
的展開式中,奇數(shù)項系數(shù)和為32,則含
1
x2
項的系數(shù)是(  )
A、-2B、20C、-15D、15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•廣州模擬)若(x-
1x
)n
的展開式中第三項的系數(shù)為10,則n=
5
5

查看答案和解析>>

同步練習(xí)冊答案