【題目】在銳角三角形中,分別為內(nèi)角所對的邊,且滿足.

1)求角的大;

2)若,且,求的值.

【答案】解:()因?yàn)?/span>,

所以……………………………………………… 2

因?yàn)?/span>,所以. …………………………………………………3

為銳角,則. …………………………………………… 5

)由()可知,.因?yàn)?/span>

根據(jù)余弦定理,得………………………………………7

整理,得

由已知,則

,可得,……………………………………… 9

于是………………………… 11

所以…………… 13

【解析】試題分析:(1)由正弦定理可得,即,則角可求;

2))由(1)知,,由余弦定理可得,進(jìn)而求得的值可求

試題解析:(1)因?yàn)?/span>,所以,因?yàn)?/span>,

所以,又為銳角,則.

2)由(1)知,,因?yàn)?/span>,根據(jù)余弦定理得:,整理,得,由已知,則,又,可得,于是

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

)求的單調(diào)區(qū)間;

)若在上存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠的A、B、C三個不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測.

車間

A

B

C

數(shù)量

50

150

100

(1)求這6件樣品中來自A、B、C各車間產(chǎn)品的數(shù)量;

(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測,求這2件商品來自相同車間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn)是曲線上一點(diǎn),若點(diǎn)到曲線的最小距離為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的正方形與梯形所在的平面互相垂直,其中, 的中點(diǎn).

(Ⅰ)證明: 平面

(Ⅱ)求與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年某市政府為了有效改善市區(qū)道路交通擁堵狀況出臺了一系列的改善措施,其中市區(qū)公交站點(diǎn)重新布局和建設(shè)作為重點(diǎn)項(xiàng)目.市政府相關(guān)部門根據(jù)交通擁堵情況制訂了“市區(qū)公交站點(diǎn)重新布局方案”,現(xiàn)準(zhǔn)備對該“方案”進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否啟用該“方案”.調(diào)查人員分別在市區(qū)的各公交站點(diǎn)隨機(jī)抽取若干市民對該“方案”進(jìn)行評分,并將結(jié)果繪制成如圖所示的頻率分布直方圖.相關(guān)規(guī)則為:①調(diào)查對象為本市市民,被調(diào)查者各自獨(dú)立評分;②采用百分制評分,[60,80)內(nèi)認(rèn)定為滿意,不低于80分認(rèn)定為非常滿意;③市民對公交站點(diǎn)布局的滿意率不低于75%即可啟用該“方案”;④用樣本的頻率代替概率.

(1)從該市800萬人的市民中隨機(jī)抽取5人,求恰有2人非常滿意該“方案”的概率;并根據(jù)所學(xué)統(tǒng)計(jì)學(xué)知識判斷該市是否啟用該“方案”,說明理由.

(2)已知在評分低于60分的被調(diào)查者中,老年人占,現(xiàn)從評分低于60分的被調(diào)查者中按年齡分層抽取9人以便了解不滿意的原因,并從中抽取3人擔(dān)任群眾督查員,記為群眾督查員中的老人的人數(shù),求隨機(jī)變量的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn), 、是雙曲線上的兩個動點(diǎn),動點(diǎn)滿足,直線與直線斜率之積為2,已知平面內(nèi)存在兩定點(diǎn)、,使得為定值,則該定值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校隨機(jī)抽取20個班,調(diào)查各班中有網(wǎng)上購物經(jīng)歷的人數(shù),所得數(shù)據(jù)的莖葉圖如圖所示.以組距為5將數(shù)據(jù)分組成[0,5),[5,10),…,[30,35),[35,40]時,所作的頻率分布直方圖是( )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是直角梯形, ,又,直線與直線所成的角為

(1)求證: ;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案