【題目】某上市股票在30天內(nèi)每股的交易價格(元)與時間(天)組成有序數(shù)對,點落在圖中的兩條線段上;該股票在30天內(nèi)的日交易量(萬股)與時間(天)的部分?jǐn)?shù)據(jù)如下表所示,且滿足一次函數(shù)關(guān)系,

4

10

16

22

(萬股)

36

30

24

18

那么在這30天中第幾天日交易額最大( )

A. 10 B. 15 C. 20 D. 25

【答案】B

【解析】

由圖象知函數(shù)為分段函數(shù),根據(jù)待定系數(shù)法分別求出函數(shù)在上的解析式,再根據(jù)表格求出一次函數(shù)的解析式,從而寫出交易額函數(shù)的解析式,在各段上根據(jù)二次函數(shù)求最值即可.

當(dāng)時,設(shè),根據(jù)圖象知過點,所以

解得,所以

同理可得當(dāng),

綜上可得,

由題意可設(shè),把代入可得,

所以

當(dāng)時,時,萬元,

當(dāng)時,時,萬元

綜上可得,第15日的交易額最大為125萬元,故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x2-11x+18<0},B={x|-2≤x≤5}.

(1)求AB;B∪(UA);

(2)已知集合C={x|axa+2},若C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面邊長為a,EPC的中點.

(Ⅰ)求證:PA∥平面BDE

(Ⅱ)平面PAC⊥平面BDE;

(Ⅲ)若二面角E-BD-C為30°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在公比為2的等比數(shù)列{an}中,a2與a3的等差中項是9
(1)求a1的值;
(2)若函數(shù)y=|a1|sin( x+φ),|φ|<π,的一部分圖象如圖所示,M(﹣1,|a1|),N(3,﹣|a1|)為圖象上的兩點,設(shè)∠MPN=β,其中P與坐標(biāo)原點O重合,0<β<π,求tan(φ﹣β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=exsinx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果對于任意的 ,f(x)≥kx恒成立,求實數(shù)k的取值范圍;
(3)設(shè)函數(shù)F(x)=f(x)+excosx, ,過點 作函數(shù)F(x)的圖象的所有切線,令各切點的橫坐標(biāo)按從小到大構(gòu)成數(shù)列{xn},求數(shù)列{xn}的所有項之和的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣x2﹣ax.
(1)若曲線y=f(x)在點x=0處的切線斜率為1,求函數(shù)f(x)在[0,1]上的最值;
(2)令g(x)=f(x)+ (x2﹣a2),若x≥0時,g(x)≥0恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)a=0且x>0時,證明f(x)﹣ex≥xlnx﹣x2﹣x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)求實數(shù)的值;

(2)當(dāng)時,函數(shù)存在零點,求實數(shù)的取值范圍;

(3)設(shè)函數(shù),若函數(shù)的圖像只有一個公共點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校的學(xué)生文娛團(tuán)隊由理科組和文科組構(gòu)成,具體數(shù)據(jù)如表所示:

組別

文科

理科

性別

男生

女生

男生

女生

人數(shù)

3

1

3

2

學(xué)校準(zhǔn)備從該文娛團(tuán)隊中選出4人到某社區(qū)參加大型公益活動演出,每選出一名男生,給其所在的組記1分;每選出一名女生,給其所在的組記2分,要求被選出的4人中文科組和理科組的學(xué)生都有.
(I)求理科組恰好得4分的概率;
(II)記文科組的得分為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;

(2)當(dāng)時,若對任意的,總存在使成立,求實數(shù)的取值范圍;

(3)若的值域為區(qū)間,是否存在常數(shù),使區(qū)間的長度為?若存在,求出的值,若不存在,請說明理由.(柱:區(qū)間的長度為

查看答案和解析>>

同步練習(xí)冊答案