【題目】若數(shù)列滿足:存在正整數(shù),對(duì)任意的,使得成立,則稱為階穩(wěn)增數(shù)列.
(1)若由正整數(shù)構(gòu)成的數(shù)列為階穩(wěn)增數(shù)列,且對(duì)任意,數(shù)列中恰有個(gè),求的值;
(2)設(shè)等比數(shù)列為階穩(wěn)增數(shù)列且首項(xiàng)大于,試求該數(shù)列公比的取值范圍;
(3)在(1)的條件下,令數(shù)列(其中,常數(shù)為正實(shí)數(shù)),設(shè)為數(shù)列的前項(xiàng)和.若已知數(shù)列極限存在,試求實(shí)數(shù)的取值范圍,并求出該極限值.
【答案】(1);(2);(3).
【解析】
(1)設(shè),由題意得出,求出正整數(shù)的值即可;
(2)根據(jù)定義可知等比數(shù)列中的奇數(shù)項(xiàng)構(gòu)成的等比數(shù)列為階穩(wěn)增數(shù)列,偶數(shù)項(xiàng)構(gòu)成的等比數(shù)列也為階穩(wěn)增數(shù)列,分和兩種情況討論,列出關(guān)于的不等式,解出即可;
(3)求出,然后分、和三種情況討論,求出,結(jié)合數(shù)列的極限存在,求出實(shí)數(shù)的取值范圍.
(1)設(shè),由于數(shù)列為階穩(wěn)增數(shù)列,則,
對(duì)任意,數(shù)列中恰有個(gè),
則數(shù)列中的項(xiàng)依次為:、、、、、、、、、、、、、、、、,
設(shè)數(shù)列中值為的最大項(xiàng)數(shù)為,
則,
由題意可得,即,,解得,
因此,;
(2)由于等比數(shù)列為階穩(wěn)增數(shù)列,即對(duì)任意的,,且.
所以,等比數(shù)列中的奇數(shù)項(xiàng)構(gòu)成的等比數(shù)列為階穩(wěn)增數(shù)列,偶數(shù)項(xiàng)構(gòu)成的等比數(shù)列也為階穩(wěn)增數(shù)列.
①當(dāng)時(shí),則等比數(shù)列中每項(xiàng)都為正數(shù),由可得,整理得,解得;
②當(dāng)時(shí),
(i)若為正奇數(shù),可設(shè),則,
由,得,即,整理得,解得;
(ii)若為正偶數(shù)時(shí),可設(shè),則,
由,得,即,整理得,解得.
所以,當(dāng)時(shí),等比數(shù)列為階穩(wěn)增數(shù)列.
綜上所述,實(shí)數(shù)的取值范圍是;
(3),由(1)知,則.
①當(dāng)時(shí),,,則,
此時(shí),數(shù)列的極限不存在;
②當(dāng)時(shí),,
,
上式下式得,
所以,,則.
(i)若時(shí),則,此時(shí)數(shù)列的極限不存在;
(ii)當(dāng)時(shí),,
此時(shí),數(shù)列的極限存在.
綜上所述,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系與直角坐標(biāo)系有相同的長(zhǎng)度單位,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸.已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,射線與曲線分別交異于極點(diǎn)的四點(diǎn).
(1)若曲線關(guān)于曲線對(duì)稱,求的值,并把曲線和化成直角坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組為了研究晝夜溫差對(duì)一種稻谷種子發(fā)芽情況的影響,他們分別記錄了4月1日至4月5日的每天星夜溫差與實(shí)驗(yàn)室每天每100顆種子的發(fā)芽數(shù),得到如下資料:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差 | 9 | 10 | 11 | 8 | 12 |
發(fā)芽數(shù)(顆) | 38 | 30 | 24 | 41 | 17 |
利用散點(diǎn)圖,可知線性相關(guān)。
(1)求出關(guān)于的線性回歸方程,若4月6日星夜溫差,請(qǐng)根據(jù)你求得的線性同歸方程預(yù)測(cè)4月6日這一天實(shí)驗(yàn)室每100顆種子中發(fā)芽顆數(shù);
(2)若從4月1日 4月5日的五組實(shí)驗(yàn)數(shù)據(jù)中選取2組數(shù)據(jù),求這兩組恰好是不相鄰兩天數(shù)據(jù)的概率.
(公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年,我國(guó)施行個(gè)人所得稅專項(xiàng)附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項(xiàng)專項(xiàng)附加扣除.某單位老、中、青員工分別有人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取人調(diào)查專項(xiàng)附加扣除的享受情況.
(Ⅰ)應(yīng)從老、中、青員工中分別抽取多少人?
(Ⅱ)抽取的25人中,享受至少兩項(xiàng)專項(xiàng)附加扣除的員工有6人,分別記為.享受情況如右表,其中“”表示享受,“×”表示不享受.現(xiàn)從這6人中隨機(jī)抽取2人接受采訪.
員工 項(xiàng)目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
繼續(xù)教育 | × | × | ○ | × | ○ | ○ |
大病醫(yī)療 | × | × | × | ○ | × | × |
住房貸款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
贍養(yǎng)老人 | ○ | ○ | × | × | × | ○ |
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)為事件“抽取的2人享受的專項(xiàng)附加扣除至少有一項(xiàng)相同”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來(lái),移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
交付金額(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
僅使用A | 18人 | 9人 | 3人 |
僅使用B | 10人 | 14人 | 1人 |
(Ⅰ)從全校學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生上個(gè)月A,B兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機(jī)抽取1人,以X表示這2人中上個(gè)月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒(méi)有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機(jī)抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形為正方形, 平面, , 是上一點(diǎn),且.
(1)求證: 平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測(cè),每一件一等品都能通過(guò)檢測(cè),每一件二等品通過(guò)檢測(cè)的概率為.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.
(Ⅰ) 隨機(jī)選取1件產(chǎn)品,求能夠通過(guò)檢測(cè)的概率;
(Ⅱ)隨機(jī)選取3件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列;
(Ⅲ)隨機(jī)選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過(guò)檢測(cè)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,AC與BD交于點(diǎn)O,PC⊥底面ABCD, 點(diǎn)E為側(cè)棱PB的中點(diǎn).
求證:(1) PD∥平面ACE;
(2) 平面PAC⊥平面PBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年的西部決賽勇士和火箭共進(jìn)行了七場(chǎng)比賽,經(jīng)歷了殘酷的“搶七”比賽,兩隊(duì)的當(dāng)家球星庫(kù)里和杜蘭特七場(chǎng)比賽的每場(chǎng)比賽的得分如下表:
第一場(chǎng) | 第二場(chǎng) | 第三場(chǎng) | 第四場(chǎng) | 第五場(chǎng) | 第六場(chǎng) | 第七場(chǎng) | |
庫(kù)里 | 26 | 28 | 24 | 22 | 31 | 29 | 36 |
杜蘭特 | 26 | 29 | 33 | 26 | 40 | 29 | 27 |
(1)繪制兩人得分的莖葉圖;
(2)分析并比較兩位球星的七場(chǎng)比賽的平均得分及得分的穩(wěn)定程度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com