在平面直角坐標系xOy中,過點A(-2,-1)橢圓C∶=1(a>b>0)的左焦點為F,短軸端點為B1、B2,=2b2.
(1)求a、b的值;
(2)過點A的直線l與橢圓C的另一交點為Q,與y軸的交點為R.過原點O且平行于l的直線與橢圓的一個交點為P.若AQ·AR=3OP2,求直線l的方程.
(1)a=2,b=(2)當k=1時,直線l的方程為x-y+1=0,當k=-2時,直線l的方程為2x+y+5=0.
【解析】(1)因為F(-c,0),B1(0,-b),B2(0,b),所以=(c,-b),=(c,b).
因為=2b2,
所以c2-b2=2b2.①
因為橢圓C過A(-2,-1),代入得,=1.②
由①②解得a2=8,b2=2.
所以a=2,b=.
(2)由題意,設(shè)直線l的方程為y+1=k(x+2).
由得(x+2)[(4k2+1)(x+2)-(8k+4)]=0.
因為x+2≠0,所以x+2=,即xQ+2=.
由題意,直線OP的方程為y=kx.
由得(1+4k2)x2=8.則=,
因為AQ·AR=3OP2.所以|xQ-(-2)|×|0-(-2)|=3.
即×2=3×.
解得k=1,或k=-2.
當k=1時,直線l的方程為x-y+1=0,當k=-2時,直線l的方程為2x+y+5=0
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用21練習卷(解析版) 題型:填空題
某校從高一年級學生中隨機抽取部分學生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖.已知高一年級共有學生600名,據(jù)此估計,該模塊測試成績不少于60分的學生人數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用16練習卷(解析版) 題型:解答題
如圖,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)證明B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用13練習卷(解析版) 題型:填空題
如圖,在平面直角坐標系xOy中,F1,F2分別為橢圓=1(a>b>0)的左、右焦點,B,C分別為橢圓的上、下頂點,直線BF2與橢圓的另一個交點為D,若cos∠F1BF2=,則直線CD的斜率為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用12練習卷(解析版) 題型:填空題
橢圓T:=1(a>b>0)的左、右焦點分別為F1,F2,焦距為2c.若直線y=(x+c)與橢圓T的一個交點M滿足∠MF1F2=2∠MF2F1,則該橢圓的離心率等于________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用11練習卷(解析版) 題型:解答題
已知以點C (t∈R,t≠0)為圓心的圓與x軸交于點O,A,與y軸交于點O,B,其中O為原點.
(1)求證:△AOB的面積為定值;
(2)設(shè)直線2x+y-4=0與圓C交于點M,N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標..
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用10練習卷(解析版) 題型:填空題
在正項數(shù)列{an}中,a1=2,an+1=2an+3×5n,則數(shù)列{an}的通項公式為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試選擇填空限時訓練2練習卷(解析版) 題型:選擇題
設(shè)a,b∈R,定義運算“∧”和“∨”如下:
a∧b=a∨b=
若正數(shù)a,b,c,d滿足ab≥4,c+d≤4,則( )
A.a∧b≥2,c∧d≤2 B.a∧b≥2,c∨d≥2
C.a∨b≥2,c∧d≤2 D.a∨b≥2,c∨d≥2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com