【題目】在一次體育興趣小組的聚會(huì)中,要安排6人的座位,使他們?cè)谌鐖D所示的6個(gè)椅子中就坐,且相鄰座位(如1與2,2與3)上的人要有共同的體育興趣愛(ài)好.現(xiàn)已知這6人的體育興趣愛(ài)好如下表所示,且小林坐在1號(hào)位置上,則4號(hào)位置上坐的是
小林 | 小方 | 小馬 | 小張 | 小李 | 小周 | |
體育興趣愛(ài)好 | 籃球,網(wǎng)球,羽毛球 | 足球,排球,跆拳道 | 籃球,棒球,乒乓球 | 擊劍,網(wǎng)球,足球 | 棒球,排球,羽毛球 | 跆拳道,擊劍,自行車(chē) |
A.小方B.小張C.小周D.小馬
【答案】A
【解析】
根據(jù)合情推理,即可推斷出4號(hào)位置上坐的是小方.
根據(jù)題意,相鄰座位上的人要有共同的體育興趣愛(ài)好,所以當(dāng)小林坐在1號(hào)位置上時(shí),
位置就坐情況可以是
1 | 2 | 3 | 4 | 5 | 6 |
小林 | 小馬 | 小李 | 小方 | 小周 | 小張 |
小林 | 小張 | 小周 | 小方 | 小李 | 小馬 |
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在處的切線(xiàn)方程為,求實(shí)數(shù),的值;
(2)若函數(shù)在和兩處取得極值,求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一平面與空間四邊形的對(duì)角線(xiàn),都平行,且交空間四邊形的邊,,,分別于,,,.
(1)求證:四邊形為平行四邊形;
(2)若是邊的中點(diǎn),,,異面直線(xiàn)與所成的角為60°,求線(xiàn)段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1各條棱長(zhǎng)均為4,且AA1⊥平面ABC,D為AA1的中點(diǎn),M,N分別在線(xiàn)段BB1和線(xiàn)段CC1上,且B1M=3BM,CN=3C1N,
(1)證明:平面DMN⊥平面BB1C1C;
(2)求三棱錐B1﹣DMN的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)射線(xiàn)與曲線(xiàn)交點(diǎn)為、兩點(diǎn),射線(xiàn)與曲線(xiàn)交于點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中國(guó)詩(shī)詞大會(huì)》(第二季)亮點(diǎn)頗多,十場(chǎng)比賽每場(chǎng)都有一首特別設(shè)計(jì)的開(kāi)場(chǎng)詩(shī)詞,在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《將進(jìn)酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩(shī)詞排在后六場(chǎng),且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場(chǎng)的排法有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(2)是否同時(shí)存在實(shí)數(shù)和正整數(shù),使得函數(shù)在上恰有2019個(gè)零點(diǎn)若存在,請(qǐng)求出所有符合條件的和的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)若關(guān)于的方程有三個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)設(shè),求函數(shù)的最大值;
(3)已知,求函數(shù)的最大值;
(4)設(shè),且,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com