(12分)已知三角形ABC的頂點(diǎn)坐標(biāo)為
A(-1,5)、B(-2,-1)、C(4,3),M是BC邊
的中點(diǎn).
(I)求AB邊所在的直線方程;
(II)求中線AM的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
直線經(jīng)過點(diǎn),其斜率為,直線與圓相交,交點(diǎn)分別為.
(1)若,求的值;
(2)若,求的取值范圍;
(3)若(為坐標(biāo)原點(diǎn)),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分9分)
在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的10海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)E正北40海里處有一個(gè)雷達(dá)觀測站A,某時(shí)刻測得一艘勻速直線行駛的船只位于點(diǎn)A北偏東30°且與點(diǎn)A相距100海里的位置B,經(jīng)過2小時(shí)又測得該船已行駛到點(diǎn)A北偏東60°且與點(diǎn)A相距20海里的位置C.
(I)求該船的行駛速度(單位:海里/小時(shí));
(II)若該船不改變航行方向繼續(xù)行駛.判斷
它是否會進(jìn)入警戒水域,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)
已知ABC的頂點(diǎn)C(5,1),AC邊上的中線BM所在直線方程為,BC邊上的高AH所在直線方程為,求:
(1)頂點(diǎn)B的坐標(biāo);
(2)直線AC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了綠化城市,準(zhǔn)備在如圖所示的區(qū)域內(nèi)修建一個(gè)矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的內(nèi)部有一文物保護(hù)區(qū)不能占用,經(jīng)測量AB=100m,BC=80m,AE=30m,AF=20m.
(1) 求直線EF的方程(4 分 ).
(2) 應(yīng)如何設(shè)計(jì)才能使草坪的占地面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知且,求:
(1)的最小值;
(2)若直線與軸、軸分別交于、,求(O為坐標(biāo)原點(diǎn))面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知直線 過點(diǎn)A(1,2),且與兩坐標(biāo)軸的正半軸圍成的三角形的面積是4,求直線 的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com