給出下列四個(gè)命題,其中正確命題序號(hào)是
 

①若b2=ac,則b是a,c的等比中項(xiàng).
②數(shù)列{an}既是等差數(shù)列,又是等比數(shù)列,則{an}是常數(shù)列.
③若數(shù)列{an}的前n項(xiàng)和Sn=2×3n-2,則{an}是等比數(shù)列.
④若a,b,c成等比數(shù)列,則lga,lgb,lgc成等差數(shù)列.
分析:逐個(gè)驗(yàn)證:①舉反例a=b=c=0;④舉反例a=-1,b=-2,c=-4,②設(shè)等差數(shù)列{an}的公差為d,又{an}為等比數(shù)列,故(a1+d)2=a1(a1+2d),解得d=0,可得數(shù)列為常數(shù)列;③由an與Sn的關(guān)系可得an=4×3n-1,由等比數(shù)列的定義可得.
解答:解:逐個(gè)驗(yàn)證:①取a=b=c=0,顯然滿足b2=ac,但不滿足b是a,c的等比中項(xiàng),故錯(cuò)誤;
②設(shè)等差數(shù)列{an}的公差為d,又{an}為等比數(shù)列,故(a1+d)2=a1(a1+2d),解得d=0,故{an}是常數(shù)列,正確;
③當(dāng)n≥2時(shí),an=Sn-Sn-1=(2×3n-2)-(2×3n-1-2)=4×3n-1,當(dāng)n=1時(shí),a1=S1=2×31-2=4,顯然也滿足,
故an=4×3n-1,滿足
an+1
an
=
3n
3n-1
=3,故{an}是等比數(shù)列,正確;
④不妨取a=-1,b=-2,c=-4,顯然滿足a,b,c成等比數(shù)列,不滿足lga,lgb,lgc成等差數(shù)列,故錯(cuò)誤.
故答案為:②③
點(diǎn)評(píng):本題考查等差數(shù)列和等比數(shù)列的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在[-2,2]上的函數(shù)y=f(x)和y=g(x),其圖象如圖所示:給出下列四個(gè)命題:
①方程f[g(x)]=0有且僅有6個(gè)根    ②方程g[f(x)]=0有且僅有3個(gè)根
③方程f[f(x)]=0有且僅有5個(gè)根    ④方程g[g(x)]=0有且僅有4個(gè)根
其中正確命題的序號(hào)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,若實(shí)數(shù)λ,μ滿足a+b=λc,ab=μc2,則稱數(shù)對(duì)(λ,μ)為△ABC的“Hold對(duì)”,現(xiàn)給出下列四個(gè)命題:
①若△ABC的“Hold對(duì)”為(2,1),則△ABC為正三角形;
②若△ABC的“Hold對(duì)”為(2,
8
9
)
,則△ABC為銳角三角形;
③若△ABC的“Hold對(duì)”為(
7
6
,
1
3
)
,則△ABC為鈍角三角形;
④若△ABC是以C為直角頂點(diǎn)的直角三角形,則以“Hold對(duì)”(λ,μ)為坐標(biāo)的點(diǎn)構(gòu)成的圖形是矩形,其面積為
2
-1
2

其中正確的命題是
①③
①③
(填上所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題
①命題“?x∈R,cosx>0”的否定是“?x0∈R,cosx0≤0”
②若0<a<1,則方程x2+ax-3=0只有一個(gè)實(shí)數(shù)根;
③對(duì)于任意實(shí)數(shù)x,有f(-x)=f(x),且當(dāng)x>0時(shí),f′(x)>0,則當(dāng)x<0時(shí),f′(x)<0;
④一個(gè)矩形的面積為S,周長(zhǎng)為l,則有序?qū)崝?shù)對(duì)(6,8)可作為(S,l)取得的一組實(shí)數(shù)對(duì),其正確命題的序號(hào)是
①③
①③
.(填所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)和y=g(x)的定義域均為{x|-2≤x≤2},其圖象如圖所示:

給出下列四個(gè)命題:
①函數(shù)y=f[g(x)]有且僅有6個(gè)零點(diǎn);  
②函數(shù)y=g[f(x)]有且僅有3個(gè)零點(diǎn);
③函數(shù)y=f[f(x)]有且僅有5個(gè)零點(diǎn);  
④函數(shù)y=g[f(x)]有且僅有4個(gè)零點(diǎn),其中正確的命題是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省文登市高三上學(xué)期期中統(tǒng)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

給出下列四個(gè)命題,其錯(cuò)誤的是(     )

①已知是等比數(shù)列的公比,則“數(shù)列是遞增數(shù)列”是“”的既不充分也不必要條件;

②若定義在上的函數(shù)是奇函數(shù),則對(duì)定義域內(nèi)的任意必有;

③若存在正常數(shù)滿足,則的一個(gè)正周期為;

④函數(shù)圖像關(guān)于對(duì)稱.

A.②④                   B.④                    C.③                  D.③④

 

查看答案和解析>>

同步練習(xí)冊(cè)答案