已知定點(diǎn),,是圓:上任意一點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,線段的中垂線與直線相交于點(diǎn),則點(diǎn)的軌跡是
A.橢圓 | B.雙曲線 | C.拋物線 | D.圓 |
B
解析試題分析:由N是圓O:x2+y2=1上任意一點(diǎn),可得ON=1,且N為MF1的中點(diǎn)可求MF2,結(jié)合已知由垂直平分線的性質(zhì)可得PM=PF1,從而可得|PF2-PF1|=|PF2-PM|=MF2=2為定值,由雙曲線的定義可得點(diǎn)P得軌跡是以F1,F(xiàn)2為焦點(diǎn)的雙曲線解:連接ON,由題意可得ON=1,且N為MF1的中點(diǎn)∴MF2=2,∵點(diǎn)F1關(guān)于點(diǎn)N的對(duì)稱點(diǎn)為M,線段F1M的中垂線與直線F2M相交于點(diǎn)P,由垂直平分線的性質(zhì)可得PM=PF1,∴|PF2-PF1|=|PF2-PM|=MF2=2<F1F2,由雙曲線的定義可得點(diǎn)P得軌跡是以F1,F(xiàn)2為焦點(diǎn)的雙曲線,故選:B
考點(diǎn):雙曲線的定義
點(diǎn)評(píng):本題以圓為載體,考查了利用雙曲線的定義判斷圓錐曲線的類型的問(wèn)題,解決本題的關(guān)鍵是由N為圓上一點(diǎn)可得ON=1,結(jié)合N為MF1的中點(diǎn),由三角形中位線的性質(zhì)可得MF2=2,還要靈活應(yīng)用垂直平分線的性質(zhì)得到解決本題的第二個(gè)關(guān)鍵點(diǎn)|PF2-PF1|=|PF2-PM|=MF2=2<F1F2,從而根據(jù)圓錐曲線的定義可求解,體現(xiàn)了轉(zhuǎn)化思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
中心為, 一個(gè)焦點(diǎn)為的橢圓,截直線所得弦中點(diǎn)的橫坐標(biāo)為,則該橢圓方程是( )
A. | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知是雙曲線的左焦點(diǎn),是雙曲線的右頂點(diǎn),過(guò)點(diǎn)且垂直于軸的直線與雙曲線交于兩點(diǎn),若是銳角三角形,則該雙曲線的離心率的取值范圍為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
橢圓的左、右焦點(diǎn)分別為F1、F2,P是橢圓上的一點(diǎn),,且,垂足為,若四邊形為平行四邊形,則橢圓的離心率的取值范圍是( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如果方程表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)k的取值范圍是( )
A.(0,+∞) | B.(0,2) | C.(1,+∞) | D.(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
(5分)從橢圓上一點(diǎn)P向x軸作垂線,垂足恰為左焦點(diǎn)F1,A是橢圓與x軸正半軸的交點(diǎn),B是橢圓與y軸正半軸的交點(diǎn),且AB∥OP(O是坐標(biāo)原點(diǎn)),則該橢圓的離心率是( 。
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com