棱長都相等的四面體A-BCD的截EFGH平行于對棱AC、BD,則截面EFGH為
矩形
矩形
分析:根據(jù)平行線的性質(zhì)證明四邊形EFGH是矩形.
解答:解:∵CD∥面EFGH,CD?平面BCD,
而平面EFGH∩平面BCD=EF.∴CD∥EF同理HG∥CD.∴EF∥HG
同理HE∥GF.∴四邊形EFGH為平行四邊形
由CD∥EF,HE∥AB
∴∠HEF(或其補(bǔ)角)為CD和AB所成的角,
又∵CD⊥AB.∴HE⊥EF.∴四邊形EFGH為矩形.
故答案為 矩形
點評:本題主要考查空間直線和平面位置關(guān)系的判斷和應(yīng)用,考查學(xué)生的運(yùn)算和推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、棱長都相等的四面體稱為正四面體.在正四面體A-BCD中,點M,N分別是CD和AD的中點,
給出下列命題:
①直線MN∥平面ABC;
②直線CD⊥平面BMN;
③三棱錐B-AMN的體積是三棱錐B-ACM的體積的一半.
則其中正確命題的序號為
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知結(jié)論:“在正三角形ABC中,若D是邊BC的中點,G是三角形ABC的重心,則
AG
GD
=2
”,若把該結(jié)論推廣到空間,則有結(jié)論:“在棱長都相等的四面體ABCD中,若△BCD的中心為M,四面體內(nèi)部一點O到四面體各面的距離都相等,則
AO
OM
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:設(shè)計選修數(shù)學(xué)2-1蘇教版 蘇教版 題型:013

如下圖,在棱長都相等的四面體A-BCD中,E、F分別為棱AD、BC的中點,連結(jié)AF、CE,則直線AF、CE所成的角的余弦值為

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山西省高二第一次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知結(jié)論:在正三角形ABC中,若D是邊BC的中點,G是三角

形ABC的重心,則AG:GD=2:1,若把該結(jié)論推廣到空間中,則有結(jié)論:在棱長都相等的

四面體ABCD中,若三角形BCD的中心為M,四面體內(nèi)部一點O到各面的距離都相等,

則AO:OM=(    )

A.1               B.2          C.3          D.4

 

查看答案和解析>>

同步練習(xí)冊答案