【題目】若a和b是計(jì)算機(jī)在區(qū)間(0,2)上產(chǎn)生的均勻隨機(jī)數(shù),則一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率為(
A.
B.
C.
D.

【答案】A
【解析】解:由已知,a和b是計(jì)算機(jī)在區(qū)間(0,2)上產(chǎn)生的隨機(jī)數(shù),對(duì)應(yīng)區(qū)域的面積為4,
要函數(shù)f(x)=ax2+4x+4b的定義域?yàn)镽(實(shí)數(shù)集),則ax2+4x+4b恒為正,
∴△=16﹣16ab<0,即ab>1;
在平面直角坐標(biāo)系中畫出點(diǎn)(a,b)所在區(qū)域:

滿足ab>1的區(qū)域面積為: (2﹣ )dx=3﹣2ln2;
∴所求概率為P=1﹣ = ;
故選:A.
【考點(diǎn)精析】掌握幾何概型是解答本題的根本,需要知道幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)在拋物線上.

(1)寫出該拋物線的標(biāo)準(zhǔn)方程及其準(zhǔn)線方程;

(2)過(guò)點(diǎn)作兩條傾斜角互補(bǔ)的直線與拋物線分別交于不同的兩點(diǎn),求證:直線的斜率是一個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:max{a,b}= ,若實(shí)數(shù)x,y滿足:|x|≤3,|y|≤3,﹣4x≤y≤ x,則max{|3x﹣y|,x+2y}的取值范圍是(
A.[ ,7]
B.[0,12]
C.[3, ]
D.[0,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的右頂點(diǎn)與上頂點(diǎn)分別為,橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)如圖,若直線與該橢圓交于兩點(diǎn),直線的斜率互為相反數(shù).

①求證:直線的斜率為定值;

②若點(diǎn)在第一象限,設(shè)的面積分別為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2013年1月,北京經(jīng)歷了59年來(lái)霧霾天氣最多的一個(gè)月.據(jù)氣象局統(tǒng)計(jì),北京市2013年1月1日至1月30日這30天里有26天出現(xiàn)霧霾天氣,《環(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》如表1:

表1 空氣質(zhì)量指數(shù)AQI分組表

AQI指數(shù)M

0~50

51~100

101~150

151~200

201~300

>300

級(jí)別

狀況

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

表2是某氣象觀測(cè)點(diǎn)記錄的連續(xù)4天里AQI指數(shù)M與當(dāng)天的空氣水平可見度y(km)的情況,表3是某氣象觀測(cè)點(diǎn)記錄的北京市2013年1月1日至1月30日的AQI指數(shù)頻數(shù)分布表.

表2 AQI指數(shù)M與當(dāng)天的空氣水平可見度y(km)的情況

AQI指數(shù)M

900

700

300

100

空氣水平可見度y(km)

0.5

3.5

6.5

9.5

表3 北京市2013年1月1日至1月30日AQI指數(shù)頻數(shù)分布表

AQI指數(shù)M

[0,200)

[200,400)

[400,600)

[600,800)

[800,1000]

頻數(shù)

3

6

12

6

3

(1)設(shè)x=,根據(jù)表2的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.

(2)小王在北京開了一家洗車店,經(jīng)小王統(tǒng)計(jì):當(dāng)AQI指數(shù)低于200時(shí),洗車店平均每天虧損約2000元;當(dāng)AQI指數(shù)在200至400時(shí),洗車店平均每天收入約4000元;當(dāng)AQI指數(shù)不低于400時(shí),洗車店平均每天收入約7000元.

①估計(jì)小王的洗車店在2013年1月份平均每天的收入;

②從AQI指數(shù)在[0,200)和[800,1000]內(nèi)的這6天中抽取2天,求這2天的收入之和不低于5000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)滿足f(﹣x)=f(x),f(x+8)=f(x),且當(dāng)x∈(0,4]時(shí)f(x)= ,關(guān)于x的不等式f2(x)+af(x)>0在[﹣2016,2016]上有且只有2016個(gè)整數(shù)解,則實(shí)數(shù)a的取值范圍是(
A.(﹣ ln6,ln2]
B.(﹣ln2,﹣ ln6)
C.(﹣ln2,﹣ ln6]
D.(﹣ ln6,ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是軸,且過(guò)點(diǎn).

(Ⅰ)求拋物線的方程;

(Ⅱ)已知斜率為的直線軸于點(diǎn),且與曲線相切于點(diǎn),點(diǎn)在曲線上,且直線軸, 關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,判斷點(diǎn)是否共線,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C經(jīng)過(guò)P(4,-2),Q(1,3)兩點(diǎn),且在y軸上截得的線段長(zhǎng)為4,半徑小于5.

)求直線PQ與圓C的方程;

)若直線l∥PQ,直線l與圓C交于點(diǎn)AB且以線段AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司引進(jìn)一條價(jià)值30萬(wàn)元的產(chǎn)品生產(chǎn)線,經(jīng)過(guò)預(yù)測(cè)和計(jì)算,得到生產(chǎn)成本降低萬(wàn)元與技術(shù)改造投入萬(wàn)元之間滿足:①的乘積成正比;②當(dāng)時(shí), ,并且技術(shù)改造投入比率 為常數(shù)且

1)求的解析式及其定義域;

2)求的最大值及相應(yīng)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案