已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合.(Ⅰ)求拋物線的方程;
(Ⅱ)動(dòng)直線恒過點(diǎn)與拋物線交于A、B兩點(diǎn),與軸交于C點(diǎn),請(qǐng)你觀察并判斷:在線段MA,MB,MC,AB中,哪三條線段的長總能構(gòu)成等比數(shù)列?說明你的結(jié)論并給出證明.

(Ⅰ)  (Ⅱ)存在三線段MA、MC、MB的長成等比數(shù)列.

解析試題分析:(Ⅰ)∵橢圓方程為:,∴,
所以,橢圓的右焦點(diǎn)為(1 , 0),拋物線的焦點(diǎn)為(,0),所以=2,
則拋物線的方程為 
(Ⅱ)設(shè)直線l,則C(-,0), 
 得,
因?yàn)椤鳎?img src="http://thumb.zyjl.cn/pic5/tikupic/fe/b/1pd2y2.png" style="vertical-align:middle;" />,所以k<1,
設(shè)Ax1,y1),Bx2,y2),則,
所以由弦長公式得:,,
,
通過觀察得:=(=(.
,則,不滿足題目要求.
所以存在三線段MA、MC、MB的長成等比數(shù)列.
考點(diǎn):直線與圓錐曲線的綜合問題;拋物線的標(biāo)準(zhǔn)方程.
點(diǎn)評(píng):本題考查橢圓的方程與性質(zhì),考查拋物線的方程,考查直線與武平縣的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查等比數(shù)列的判定,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上.若橢圓上的點(diǎn)到焦點(diǎn)、的距離之和等于4.
(1)寫出橢圓的方程和焦點(diǎn)坐標(biāo).
(2)過點(diǎn)的直線與橢圓交于兩點(diǎn)、,當(dāng)的面積取得最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足(其中為坐標(biāo)原點(diǎn)),求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為,
上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且

(Ⅰ)求橢圓的離心率;
(Ⅱ)是過三點(diǎn)的圓上的點(diǎn),到直線的最大距離等于橢圓長軸的長,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),線段的中垂線與軸相交于點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:(a>b>0),則稱以原點(diǎn)為圓心,r=的圓為橢圓C的“知己圓”。
(Ⅰ)若橢圓過點(diǎn)(0,1),離心率e=;求橢圓C方程及其“知己圓”的方程;
(Ⅱ)在(Ⅰ)的前提下,若過點(diǎn)(0,m)且斜率為1的直線截其“知己圓”的弦長為2,求m的值;
(Ⅲ)討論橢圓C及其“知己圓”的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左右焦點(diǎn)為,拋物線C:以F2為焦點(diǎn)且與橢圓相交于點(diǎn)、,點(diǎn)軸上方,直線與拋物線相切.
(1)求拋物線的方程和點(diǎn)的坐標(biāo);
(2)設(shè)A,B是拋物線C上兩動(dòng)點(diǎn),如果直線軸分別交于點(diǎn). 是以,為腰的等腰三角形,探究直線AB的斜率是否為定值?若是求出這個(gè)定值,若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,橢圓C以過點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。
求橢圓C的方程;
E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,直線過點(diǎn),,且與橢圓相切于點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)是否存在過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)、,使得?若存在,試求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xOy中,已知點(diǎn)P,曲線C的參數(shù)方程為φ為參數(shù))。以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
(1)判斷點(diǎn)P與直線l的位置關(guān)系,說明理由;
(2)設(shè)直線l與直線C的兩個(gè)交點(diǎn)為A、B,求的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案