15、給出下列四個(gè)結(jié)論:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,則a<b”的逆命題為真;
③函數(shù)f(x)=x-sinx(x∈R)有3個(gè)零點(diǎn);
④對(duì)于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí),f′(x)>g′(x).
其中正確結(jié)論的序號(hào)是
①④
(填上所有正確結(jié)論的序號(hào))
分析:①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”,可由命題的否定的書寫規(guī)則進(jìn)行判斷;
②“若am2<bm2,則a<b”的逆命題為真,可由不等式的運(yùn)算規(guī)則進(jìn)行判斷;
③函數(shù)f(x)=x-sinx(x∈R)有3個(gè)零點(diǎn),可由函數(shù)的圖象進(jìn)行判斷;
④對(duì)于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí),f′(x)>g′(x),可由函數(shù)單調(diào)性與導(dǎo)數(shù)的關(guān)系進(jìn)行判斷.
解答:解:①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”,此是一個(gè)正確命題;
②“若am2<bm2,則a<b”的逆命題為真,由于其逆命題是“若a<b,則am2<bm2”,當(dāng)m=0時(shí)不成立,故逆命題為真不正確;
③函數(shù)f(x)=x-sinx(x∈R)有3個(gè)零點(diǎn),由函數(shù)的圖象知,此函數(shù)僅有一個(gè)零點(diǎn),故命題不正解;
④對(duì)于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí),f′(x)>g′(x),由于兩個(gè)函數(shù)是一奇一偶,且在x>0時(shí),f′(x)>0,g′(x)>0,故當(dāng)x<0,,f′(x)>g′(x),成立,此命題是真命題.
綜上①④是正解命題
故答案為①④
點(diǎn)評(píng):本題考查命題的否定,函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,及不等式關(guān)系的運(yùn)算,涉及到的知識(shí)點(diǎn)較多,解題的關(guān)鍵是對(duì)每個(gè)命題涉及的知識(shí)熟練掌握,且能靈活運(yùn)用它們作出判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)結(jié)論:①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;②函數(shù)y=k3x(k>0)(k為常數(shù))的圖象可由函數(shù)y=3x的圖象經(jīng)過平移得到;③函數(shù)y=
1
2
+
1
2x-1
(x≠0)是奇函數(shù)且函數(shù)y=x(
1
3x-1
+
1
2
)
(x≠0)是偶函數(shù);④函數(shù)y=cos|x|是周期函數(shù).其中正確結(jié)論的序號(hào)是
 
.(填寫你認(rèn)為正確的所有結(jié)論序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,線段AC1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=
3
3
.給出下列四個(gè)結(jié)論:
①BF∥CE;
②CE⊥BD;
③三棱錐E-BCF的體積為定值;
④△BEF在底面ABCD內(nèi)的正投影是面積為定值的三角形;
其中,正確結(jié)論的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正三棱錐P-ABC中,D為PA的中點(diǎn),O為△ABC的中心,給出下列四個(gè)結(jié)論:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正確結(jié)論的序號(hào)是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•馬鞍山模擬)給出下列四個(gè)結(jié)論:
①命題''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,則a<b”的逆命題為真;
③已知直線l1:ax+2y-1=0,l1:x+by+2=0,則l1⊥l2的充要條件是
ab
=-2
;
④對(duì)于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x)且x>0時(shí),f'(x)>0,g'(x)>0,則x<0時(shí),f'(x)>g'(x).
其中正確結(jié)論的序號(hào)是
①④
①④
(填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)已知平面α、β、γ、和直線l,m,且l⊥m,α⊥γ,α∩γ=m,γ∩β=l;給出下列四個(gè)結(jié)論:①β⊥γ ②l⊥α③m⊥β;④α⊥β.其中正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案