如圖,已知棱柱ABCD-A1B1C1D1的底面是菱形,且面ABCD,∠DAB=60°,AD=AA1,F(xiàn)為棱AA1的中點(diǎn),M為線(xiàn)段BD1的中點(diǎn),

(1)求證:MF∥面ABCD;

(2)求證:MF⊥面BDD1B1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A′B′C′內(nèi)接于高為
2
的圓柱中,已知∠ACB=90°,AA′=
2
,BC=AC=1,O為AB的中點(diǎn).
求(1)圓柱的全面積;
(2)異面直線(xiàn)AB′與CO所成的角的大;
(3)求二面角A′-BC-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱柱△ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,已知BC=1,BB1=2,∠BCC1=
π
3

(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)試在棱CC1(不包含端點(diǎn)C,C1上確定一點(diǎn)E的位置,使得EA⊥EB1(要求說(shuō)明理由).
(Ⅲ)在(Ⅱ)的條件下,若AB=
2
,求二面角A-EB1-A1的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C中,已知AC⊥BC,AB⊥BB1,CD⊥平面AA B1B,AC=BC=2.
(I)求證:BB1⊥平面ABC;
(II)設(shè)∠CA1D=
π6
,求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A,ACC1A1均為正方形,∠BAC=90°,AB=2,點(diǎn)D1是棱B1C1的中點(diǎn).
(I)求證:A1D1⊥平面BB1C1C;
(II)已知線(xiàn)段A1B1上的一點(diǎn)P,滿(mǎn)足直線(xiàn)AP與平面A1D1C所成角的正弦值為
30
15
,求
A1P
A1B1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,AB⊥BC,E為棱CC1的中點(diǎn),已知AB=
2
,BB1=2,BC=1.
(1)證明:BE是異面直線(xiàn)AB與EB1的公垂線(xiàn);
(2)求二面角A-EB1-A1的大。
(3)求點(diǎn)A1到面AEB1的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案