【題目】新冠肺炎疫情造成醫(yī)用防護服緊缺,當?shù)卣疀Q定為防護服生產(chǎn)企業(yè)A公司擴大生產(chǎn)提供(萬元)的專項補貼,并以每套80元的價格收購其生產(chǎn)的全部防護服.A公司在收到政府x(萬元)補貼后,防護服產(chǎn)量將增加到(萬件),其中k為工廠工人的復(fù)工率,A公司生產(chǎn)t萬件防護服還需投入成本(萬元).

1)將A公司生產(chǎn)防護服的利潤y(萬元)表示為補貼x(萬元)的函數(shù);

2)對任意的(萬元),當復(fù)工率k達到多少時,A公司才能不產(chǎn)生虧損?(精確到0.01

【答案】1;(2.

【解析】

1)根據(jù)題意,由利潤等于收入減去成本,即可列出函數(shù)關(guān)系;

2)根據(jù)(1)的結(jié)果,由題意,只需上恒成立,即上恒成立,根據(jù)函數(shù)單調(diào)性,求出的最大值,即可得出結(jié)果.

1)因為公司生產(chǎn)萬件防護服還需投入成本,政府以每套80元的價格收購其生產(chǎn)的全部防護服,且提供(萬元)的專項補貼,

所以,公司生產(chǎn)防護服的利潤

2)為使公司不產(chǎn)生虧損,只需利潤上恒成立;即上恒成立;

因為,

,因為,所以

,

任取,

因為,所以,即,

所以,即,

所以函數(shù)上單調(diào)遞增;

因此,即的最大值為

所以只需,即.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線方程為.

(1)求實數(shù)的值;

(2)若有兩個極值點,,求的取值范圍并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程是是參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,其傾斜角為

)證明直線恒過定點,并寫出直線的參數(shù)方程;

)在()的條件下,若直線與曲線交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)在區(qū)間上恒成立,求實數(shù)a的取值范圍;

2)若函數(shù)在區(qū)間上有兩個極值點,求實數(shù)a的取值范圍;

3)若函數(shù)的導函數(shù)的圖象與函數(shù)圖象有兩個不同的交點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,

1若展開式中第5項,第6項與第7項的二項式系數(shù)成等差數(shù)列,求展開式中二項式系數(shù)最大項

的系數(shù);

2若展開式前三項的二項式系數(shù)和等于79,求展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】41屆世界博覽會于201051日至1031日,在中國上海舉行,氣勢磅礴的中國館——“東方之冠令人印象深刻,該館以東方之冠,鼎盛中華,天下糧倉,富庶百姓為設(shè)計理念,代表中國文化的精神與氣質(zhì).其形如冠蓋,層疊出挑,制似斗拱.它有四根高33.3米的方柱,托起斗狀的主體建筑,總高度為60.3米,上方的斗冠類似一個倒置的正四棱臺,上底面邊長是139.4米,下底面邊長是69.9米,則斗冠的側(cè)面與上底面的夾角約為( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示程序框圖,若輸出的值為,在條件框內(nèi)應(yīng)填寫( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù),其中,e為自然對數(shù)的底數(shù).

1)求證:有且只有一個極小值點;

2)若不等式上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點,與短軸的一個端點構(gòu)成一個等邊三角形,且直線與圓相切.

1)求橢圓的方程;

2)已知過橢圓的左頂點的兩條直線,分別交橢圓兩點,且,求證:直線過定點,并求出定點坐標.

查看答案和解析>>

同步練習冊答案