精英家教網 > 高中數學 > 題目詳情

【題目】設函數

(1)討論的單調性

(2)若存在正數,使得當,求實數的取值范圍.

【答案】(1)見解析;(2)

【解析】分析:函數求導得,討論,由導數的正負求單調區(qū)間即可;

(2),分析函數可知,設,,討論兩種情況,知成立,時不成立,時,存在,使得當時,可化為,,設,分析求解即可.

詳解:(1)

,單調遞增.

時,若,則,若,則;所以單調遞增,在上單調遞減.

(2),內單調遞增,當,,所以,.

,.

,單調遞增.所以當,

故存在正數,使得當,.

,當,,單調遞減,因為,所以.故不存在正數,使得當,.

,單調遞減,因為,所以存在使得當時,,可化為,.

,.

時,,單調遞增,又,所以,.故不存在正數,使得當.

時,當,單調遞減,又,所以.故存在,使得當,.

綜上,實數的取值范圍為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】以下命題中,正確的命題是:______.

1是奇函數,則的值為0;

2)若,則、);

3)設集合,則

4)若單調遞增,則的取值集合為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數滿足為常數),且3

1)求實數的值,并求出函數的解析式;

2)當時,討論函數的單調性,并用定義證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】分形理論是當今世界十分風靡和活躍的新理論、新學科。其中,把部分與整體以某種方式相似的形體稱為分形。分形是一種具有自相似特性的現(xiàn)象,圖象或者物理過程。標準的自相似分形是數學上的抽象,迭代生成無限精細的結構。也就是說,在分形中,每一組成部分都在特征上和整體相似,只僅僅是變小了一些而已,謝爾賓斯基三角形就是一種典型的分形,是由波蘭數學家謝爾賓斯基在1915年提出的,按照如下規(guī)律依次在一個黑色三角形內去掉小三角形則當時,該黑色三角形內共去掉( )個小三角形

A. 81 B. 121 C. 364 D. 1093

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 過點,且兩個焦點的坐標分別為, .

(1)求的方程;

(2)若, , 上的三個不同的點, 為坐標原點,且,求證:四邊形的面積為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,雙十一購物狂歡節(jié)(簡稱“雙11”)活動已成為中國電子商務行業(yè)年度盛事,某網絡商家為制定2018年“雙11”活動營銷策略,調查了2017年“雙11”活動期間每位網購客戶用于網購時間(單位:小時),發(fā)現(xiàn)近似服從正態(tài)分布

(1)求的估計值;

(2)該商家隨機抽取參與2017年“雙11”活動的10000名網購客戶,這10000名客戶在2017年“雙11”活動期間,用于網購時間屬于區(qū)間的客戶數為.該商家計劃在2018年“雙11”活動前對這名客戶發(fā)送廣告,所發(fā)廣告的費用為每位客戶0.05元.

(i)求該商家所發(fā)廣告總費用的平均估計值;

(ii)求使取最大值時的整數的值

附:若隨機變量服從正態(tài)分布,,

,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解人們對“2019年3月在北京召開的第十三屆全國人民代表大會第二次會議和政協(xié)第十三屆全國委員會第二次會議”的關注度,某部門從年齡在15歲到65歲的人群中隨機調查了100人,并得到如圖所示的年齡頻率分布直方圖,在這100人中關注度非常髙的人數與年齡的統(tǒng)計結果如右表所示:

年齡

關注度非常高的人數

15

5

15

23

17

(Ⅰ)由頻率分布直方圖,估計這100人年齡的中位數和平均數;

(Ⅱ)根據以上統(tǒng)計數據填寫下面的列聯(lián)表,據此表,能否在犯錯誤的概率不超過的前提下,認為以45歲為分界點的不同人群對“兩會”的關注度存在差異?

(Ⅲ)按照分層抽樣的方法從年齡在35歲以下的人中任選六人,再從六人中隨機選兩人,求兩人中恰有一人年齡在25歲以下的概率是多少.

45歲以下

45歲以上

總計

非常髙

一般

總計

參考數據:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,函數.

1)若無零點,求實數的取值范圍;

2)若有兩個相異零點,,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著食品安全問題逐漸引起人們的重視,有機、健康的高端綠色蔬菜越來越受到消費者的歡迎,同時生產—運輸—銷售一體化的直銷供應模式,不僅減少了成本,而且減去了蔬菜的二次污染等問題.

(1)在有機蔬菜的種植過程中,有機肥料使用是必不可少的.根據統(tǒng)計某種有機蔬菜的產量與有機肥料的用量有關系,每個有機蔬菜大棚產量的增加量(百斤)與使用堆漚肥料(千克)之間對應數據如下表

使用堆漚肥料(千克)

2

4

5

6

8

產量的增加量(百斤)

3

4

4

4

5

依據表中的數據,用最小二乘法求出關于的線性回歸方程;并根據所求線性回歸方程,估計如果每個有機蔬菜大棚使用堆漚肥料10千克,則每個有機蔬菜大棚產量增加量是多少百斤?

(2)某大棚蔬菜種植基地將采摘的有機蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價格銷售到生鮮超市.“樂購”生鮮超市以每份15元的價格賣給顧客,如果當天前8小時賣不完,則超市通過促銷以每份5元的價格賣給顧客(根據經驗,當天能夠把剩余的有機蔬菜都低價處理完畢,且處理完畢后,當天不再進貨).該生鮮超市統(tǒng)計了100天有機蔬菜在每天的前8小時內的銷售量(單位:份),制成如下表格(注:,且);

前8小時內的銷售量(單位:份)

15

16

17

18

19

20

21

頻數

10

x

16

6

15

13

y

若以100天記錄的頻率作為每日前8小時銷售量發(fā)生的概率,該生鮮超市當天銷售有機蔬菜利潤的期望值為決策依據,當購進17份比購進18份的利潤的期望值大時,求的取值范圍.

附:回歸直線方程為,其中.

查看答案和解析>>

同步練習冊答案