設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則下列命題中是真命題的個(gè)數(shù)是( 。
①存在一個(gè)圓與所有直線相交②存在一個(gè)圓與所有直線不相交;
③存在一個(gè)圓與所有直線相切④M中所有直線均經(jīng)過(guò)一個(gè)定點(diǎn);
⑤不存在定點(diǎn)P不在M中的任一條直線上;
⑥對(duì)于任意整數(shù)n(n≥3),存在正n邊形,其所有邊均在M中的直線上;
⑦M(jìn)中的直線所能圍成的正三角形面積都相等.
A、3B、4C、5D、6
分析:根據(jù)已知可知直線系M都為以(0,2)為圓心,以1為半徑的圓的切線,取半徑為2即可得到所以①對(duì);存在圓心為(0,2),半徑為
1
2
的圓與直線都不相交,所以②對(duì);③顯然對(duì);④錯(cuò);⑤錯(cuò),存在可取一點(diǎn)(0,2)即可驗(yàn)證;⑥,⑦可去三角形的外接正三角形所有邊均在M中的直線上且面積相等,所以⑥⑦都正確.
解答:解:根據(jù)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π)得到所有直線都為圓心為(0,2),半徑為1的圓的切線;
可取圓心為(0,2),半徑分別為2,
1
2
,1得到①②③正確;所有的直線與一個(gè)圓相切,沒(méi)有過(guò)定點(diǎn),④錯(cuò);存在(0,2)不在M中的任一條直線上,所以⑤錯(cuò);存在等邊三角形的三邊都在M中的直線上,⑥⑦對(duì),可取圓的外接正三角形其所有邊均在M中的直線上且面積相等;可知①②③⑥⑦正確,④⑤錯(cuò),所以真命題的個(gè)數(shù)為5個(gè)
故選C
點(diǎn)評(píng):考查學(xué)生利用直線的斜截式方程得到直線系M為平面內(nèi)除過(guò)一個(gè)圓的區(qū)域.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),對(duì)于下列四個(gè)命題:A、存在一個(gè)圓與所有直線相交;B、存在一個(gè)圓與所有直線不相交;C、存在一個(gè)圓與所有直線相切;D、M中的直線所能圍成的正三角形面積都相等
其中真命題的代號(hào)是
 
(寫出所有真命題的代號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),對(duì)于下列四個(gè)命題:
(1)M中所有直線均經(jīng)過(guò)一個(gè)定點(diǎn);
(2)存在定點(diǎn)P不在M中的任一條直線上;
(3)對(duì)于任意正整數(shù)n(n≥3),存在正n邊形,其所有邊均在M中的直線上;
(4)M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),對(duì)于下列四個(gè)結(jié)論:
(1)當(dāng)直線垂直y軸時(shí),θ=0或π;
(2)當(dāng)θ=
π6
時(shí),直線的傾斜角為120°;
(3)M中所有直線均經(jīng)過(guò)一個(gè)定點(diǎn);
(4)存在定點(diǎn)P不在M中的任意一條直線上.
其中正確的是
(2)(4)
(2)(4)
(寫出所有正確的代號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓Mx2+y2-2tx-6t-10=0,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),若橢圓C與x軸的交點(diǎn)A(5,y0)到其右準(zhǔn)線的距離為
10
3
;點(diǎn)A在圓M外,且圓M上的點(diǎn)和點(diǎn)A的最大距離與最小距離之差為2.
(1)求圓M的方程和橢圓C的方程;
(2)設(shè)點(diǎn)P為橢圓C上任意一點(diǎn),自點(diǎn)P向圓M引切線,切點(diǎn)分別為A、B,請(qǐng)?jiān)囍デ?span id="4r9l504" class="MathJye">
P
A•
P
B的取值范圍;
(3)設(shè)直線系M:xcosθ+(y-3)sinθ=1(θ∈R);求證:直線系M中的任意一條直線l恒與定圓相切,并直接寫出三邊都在直線系M中的直線上的所有可能的等腰直角三角形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案