【題目】如圖1 ,正方形的邊長(zhǎng)為分別是和的中點(diǎn),是正方形的對(duì)角線與的交點(diǎn),是正方形兩對(duì)角線的交點(diǎn),現(xiàn)沿將折起到的位置,使得,連結(jié)(如圖2).
(1)求證:;
(2)求三棱錐的高.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國(guó)古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,劉徽稱這個(gè)方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,下圖是根據(jù)劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,若運(yùn)行該程序,則輸出的的值為( )(參考數(shù)據(jù): , , )
A. 24 B. 30 C. 36 D. 48
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的個(gè)數(shù)是( )
①命題“x0∈R,x+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量a與b的夾角是鈍角”的充要條件是“a·b<0”.
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且函數(shù)在和處都取得極值.
(1)求實(shí)數(shù)與的值;
(2)對(duì)任意,方程存在三個(gè)實(shí)數(shù)根,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在扶貧活動(dòng)中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營(yíng)狀況良好的某種消費(fèi)品專賣店以5.8萬元的優(yōu)惠價(jià)格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營(yíng)的利潤(rùn)中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開支3 600元后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).在甲提供的資料中:①這種消費(fèi)品的進(jìn)價(jià)為每件14元;②該店月銷量Q(百件)與銷量?jī)r(jià)格P(元)的關(guān)系如圖所示;③每月需各種開支2 000元.
(1)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)扣除職工最低生活費(fèi)的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為偶函數(shù),且函數(shù)圖象的兩相鄰對(duì)稱軸間的距離為.
(1)求的值;
(2)函數(shù)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ,圓: 的圓心在橢圓上,點(diǎn)到橢圓的右焦點(diǎn)的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作互相垂直的兩條直線,且交橢圓于兩點(diǎn),直線交圓于, 兩點(diǎn),且為的中點(diǎn),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓,經(jīng)過原點(diǎn)的兩直線滿足,且交圓于不同兩點(diǎn)交, 圓于不同兩點(diǎn),記的斜率為
(1)求的取值范圍;
(2)若四邊形為梯形,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點(diǎn),OD⊥PC.
(1)求證:OC⊥PD;
(2)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com