設(shè)是首項(xiàng)為,公差為的等差數(shù)列,是其前項(xiàng)和.
(1)若,,求數(shù)列的通項(xiàng)公式;
(2)記,,且、、成等比數(shù)列,證明:.
(1)或;(2)詳見解析.
解析試題分析:(1)利用等差數(shù)列的性質(zhì)得到,結(jié)合題中的已知條件將、等價(jià)轉(zhuǎn)化為一元二次方程的兩根,從而求出和,最終確定等差數(shù)列的通項(xiàng)公式;(2)先求出數(shù)列的通項(xiàng)公式(利用和表示),然后通過“、、成等比數(shù)列”這一條件確定和的之間的等量關(guān)系,進(jìn)而將的表達(dá)式進(jìn)一步化簡,然后再代數(shù)驗(yàn)證.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/95/8/1qgk64.png" style="vertical-align:middle;" />是等差數(shù)列,由性質(zhì)知,
所以、是方程的兩個(gè)實(shí)數(shù)根,解得,,
,,,或,,,,
即或;
(2)證明:由題意知∴,∴.
、、成等比數(shù)列,∴ ∴,
∵ ∴ ∴,
∴,
∴左邊 右邊,
∴左邊右邊∴成立.
考點(diǎn):1.等差數(shù)列的通項(xiàng)公式;2.等差數(shù)列求和;3.等比中項(xiàng)的性質(zhì)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為Sn,已知,且對一切都成立.
(1)若λ=1,求數(shù)列的通項(xiàng)公式;
(2)求λ的值,使數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)上兩點(diǎn),若,且P點(diǎn)的橫坐標(biāo)為.
(Ⅰ)求P點(diǎn)的縱坐標(biāo);
(Ⅱ)若求;
(Ⅲ)記為數(shù)列的前n項(xiàng)和,若對一切都成立,試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)公比大于零的等比數(shù)列的前項(xiàng)和為,且,,數(shù)列的前項(xiàng)和為,滿足,,.
(Ⅰ)求數(shù)列、的通項(xiàng)公式;
(Ⅱ)滿足對所有的均成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
各項(xiàng)均為正數(shù)的數(shù)列{}中,a1=1,是數(shù)列{}的前n項(xiàng)和,對任意n∈N﹡,有2=2p+p-p(p∈R).
(1)求常數(shù)p的值;
(2)求數(shù)列{}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前項(xiàng)和為,.
(1)求數(shù)列的通項(xiàng)公式;
(2) 設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列各項(xiàng)為非負(fù)實(shí)數(shù),前n項(xiàng)和為,且
(1)求數(shù)列的通項(xiàng)公式;
(2)當(dāng)時(shí),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前項(xiàng)和為,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,是一個(gè)與無關(guān)的常數(shù),若恰為等比數(shù)列的前三項(xiàng),(1)求的通項(xiàng)公式.(2)記數(shù)列,的前三項(xiàng)和為,求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com