【題目】已知直線l: (t為參數(shù),α為l的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C為:ρ2﹣6ρcosθ+5=0.
(1)若直線l與曲線C相切,求α的值;
(2)設(shè)曲線C上任意一點(diǎn)的直角坐標(biāo)為(x,y),求x+y的取值范圍.

【答案】
(1)解:曲線C的直角坐標(biāo)方程為x2+y2﹣6x+5=0

即(x﹣3)2+y2=4曲線C為圓心為(3,0),半徑為2的圓.

直線l的方程為:xsinα﹣ycosα+sinα=0

∵直線l與曲線C相切∴

∵α∈[0,π)∴α=


(2)解:設(shè)x=3+2cosθ,y=2sinθ

則 x+y=3+2cosθ+2sinθ=

∴x+y的取值范圍是


【解析】(1)求出圓的直角坐標(biāo)方程,直線的直角坐標(biāo)方程,利用直線l與曲線C相切,列出關(guān)系式,即可求α的值;(2)曲線C上任意一點(diǎn)的直角坐標(biāo)為(x,y),通過圓的參數(shù)方程,得到x+y的表達(dá)式,利用三角函數(shù)化簡,即可求解取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,,點(diǎn)M在邊DC上,點(diǎn)F在邊AB上,且,垂足為E,若將沿AM折起,使點(diǎn)D位于位置,連接得四棱錐

求證:;

,直線與平面ABCM所成角的大小為,求直線與平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1的棱長為1,點(diǎn)P是線段A1C1上的動(dòng)點(diǎn),則四棱錐P﹣ABCD的外接球半徑R的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地電影院為了了解當(dāng)?shù)赜懊詫?duì)快要上映的一部電影的票價(jià)的看法,進(jìn)行了一次調(diào)研,得到了票價(jià)x(單位:元)與渴望觀影人數(shù)y(單位:萬人)的結(jié)果如下表:

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(2)根據(jù)(1)中求出的線性回歸方程,若票價(jià)定為70元,預(yù)測該電影院渴望觀影人數(shù).附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 (a>b>0)的一個(gè)頂點(diǎn)為B(0,4),離心率e= ,直線l交橢圓于M,N兩點(diǎn).
(1)若直線l的方程為y=x﹣4,求弦MN的長;
(2)如果△BMN的重心恰好為橢圓的右焦點(diǎn)F,求直線l方程的一般式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.

(1) 經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);

(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取個(gè),再從這個(gè)中隨機(jī)抽取個(gè),求這個(gè)芒果中恰有個(gè)在內(nèi)的概率.

(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有個(gè),經(jīng)銷商提出如下兩種收購方案:

A:所以芒果以/千克收購;

B:對(duì)質(zhì)量低于克的芒果以/個(gè)收購,高于或等于克的以/個(gè)收購.

通過計(jì)算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)上為增函數(shù),求正實(shí)數(shù)的取值范圍;

(Ⅱ)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓O外有一點(diǎn)P,作圓O的切線PM,M為切點(diǎn),過PM的中點(diǎn)N,作割線NAB,交圓于A,B兩點(diǎn),連接PA并延長,交圓O于點(diǎn)C,連續(xù)PB交圓O于點(diǎn)D,若MC=BC.

(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的方程為,直線l的方程為,點(diǎn)P在直線l上,過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B

,試求點(diǎn)P的坐標(biāo);

求四邊形PAMB面積的最小值及此時(shí)點(diǎn)P的坐標(biāo);

求證:經(jīng)過A,P,M三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案