若點P(2,-1)平分橢圓
x2
12
+
y2
8
=1
的一條弦,則該弦所在的直線方程為______.(結(jié)果寫成一般式)
設(shè)弦的兩個端點為A(x1,y1),B(x2,y2),
由A,B在橢圓上,得
x12
12
+
y12
8
=1

x22
12
+
y22
8
=1

①-②得:
(x1-x2)(x1+x2)
12
=-
(y1-y2)(y1+y2)
8

y1-y2
x1-x2
=-
8(x1+x2)
12(y1+y2)

∵點P(2,-1)平分AB,∴x1+x2=4,y1+y2=-2.
y1-y2
x1-x2
=
4
3
,即直線AB的斜率為
4
3

∴弦AB所在的直線方程為y+1=
4
3
(x-2),化為一般式得:4x-3y-11=0.
故答案為:4x-3y-11=0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD內(nèi)接于半徑為r的圓O,點P是圓周上任意一點,求證:PA2+PB2+PC2+PD2=8r2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線y=k(x-2)+1與曲線y=-
1-x2
有兩上不同的交點,則k的取值范圍是( 。
A.[1,
4
3
]
B.[1,
4
3
)
C.(
3
4
,1]
D.(0,
4
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖,拋物線y=ax2+bx+2與x軸的交點是A(3,0)、B(6,0),與y軸的交點是C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)P(x,y)(0<x<6)是拋物線上的動點,過點P作PQy軸交直線BC于點Q.
①當(dāng)x取何值時,線段PQ的長度取得最大值,其最大值是多少?
②是否存在這樣的點P,使∠OQA為直角?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

平面直角坐標(biāo)系xOy中,過橢圓M:
x2
a2
+
y2
b2
=1
(a>b>0)右焦點的直線x+y-
3
=0交M于A,B兩點,P為AB的中點,且OP的斜率為
1
2

(Ⅰ)求M的方程
(Ⅱ)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:y2=8x與點M(-2,2),過C的焦點的直線l與C交于A,B兩點,若
MA
MB
=0
,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
a
=(x,0)
,
b
=(1,y)
,且(
a
+
3
b
)⊥(
a
-
3
b
)

(1)求點P(x,y)的軌跡C的方程,且畫出軌跡C的草圖;
(2)若直線l:y=kx+m(k≠0)與上述曲線C交于不同的兩點A、B,求實數(shù)k和m所滿足的條件;
(3)在(2)的條件下,若另有定點D(0,-1),使|AD|=|BD|,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xoy中,F(xiàn)是拋物線C:y2=2px(p>0)的焦點,圓Q過O點與F點,且圓心Q到拋物線C的準(zhǔn)線的距離為
3
2

(1)求拋物線C的方程;
(2)過F作傾斜角為60°的直線L,交曲線C于A,B兩點,求△OAB的面積;
(3)已知拋物線上一點M(4,4),過點M作拋物線的兩條弦MD和ME,且MD⊥ME,判斷:直線DE是否過定點?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,點F為橢圓的右焦點,點A、B分別為橢圓的左、右頂點,點M為橢圓的上頂點,且滿足
MF
FB
=
2
-1

(1)求橢圓C的方程;
(2)是否存在直線l,當(dāng)直線l交橢圓于P、Q兩點時,使點F恰為△PQM的垂心.若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案