【題目】如圖,直線與拋物線交于兩點,直線軸交于點,且直線恰好平分.

1)求的值;

2)設是直線上一點,直線交拋物線于另一點,直線交直線于點,求的值.

【答案】1;(2.

【解析】

試題分析:(1)聯(lián)立直線的方程和拋物線的方程,化簡寫出根與系數(shù)關(guān)系,由于直線平分,所以,代入點的坐標化簡得,結(jié)合跟魚系數(shù)關(guān)系,可求得;(2)設,,由三點共線得,再次代入點的坐標并化簡得,同理由三點共線,可得,化簡得,故.

試題解析:

1)由,整理得

,,則,

因為直線平分,

所以,即,

所以,得,滿足,所以.

2)由(1)知拋物線方程為,且,,

,,由三點共線得,

所以,即,

整理得:

三點共線,可得,

式兩邊同乘得:,

即:,

得:,代入得:,

即:,所以.

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點P0,-2),橢圓E 的離心率為,F是橢圓E的右焦點,直線PF的斜率為2O為坐標原點.

1)求橢圓E的方程;

2)直線l被圓Ox2+y2=3截得的弦長為3,且與橢圓E交于A、B兩點,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中,點在邊上,,,

(1)求;

(2)若的面積是,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點, 為橢圓:上異于點A,B的任意一點.

Ⅰ)求證:直線的斜率之積為-;

Ⅱ)是否存在過點的直線與橢圓交于不同的兩點、,使得?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某社區(qū)為了解居民參加體育鍛煉的情況,從該社區(qū)隨機抽取了18名男性居民和12名女性居民,對他們參加體育鍛煉的情況進行問卷調(diào)查.現(xiàn)按是否參加體育鍛煉將居民分成兩類:甲類(不參加體育鍛煉)、乙類(參加體育鍛煉),結(jié)果如下表:

甲類

乙類

男性居民

3

15

女性居民

6

6

(Ⅰ)根據(jù)上表中的統(tǒng)計數(shù)據(jù),完成下面的列聯(lián)表;

男性居民

女性居民

總計

不參加體育鍛煉

參加體育鍛煉

總計

(Ⅱ)通過計算判斷是否有90%的把握認為參加體育鍛煉與否與性別有關(guān)?

附:,其中.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的定義域為D,若函數(shù)滿足條件:存在,使上的值域為,則稱為“倍縮函數(shù)”,若函數(shù)為“倍縮函數(shù)”,則實數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

1)已知函數(shù),利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;

2)已知函數(shù)和函數(shù),若對任意,總存在,使得(x2)成立,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的三個頂點,,,其外接圓為.對于線段上的任意一點,

若在以為圓心的圓上都存在不同的兩點,使得點是線段的中點,則的半徑的取值范圍__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為 (為參數(shù))。在以坐標原點為極點軸正半軸為極軸的極坐標系中,曲線。

(1)寫出曲線的普通方程;

(2)過曲線的左焦點且傾斜角為的直線交曲線兩點。

查看答案和解析>>

同步練習冊答案