【題目】拖延癥總是表現(xiàn)在各種小事上,但日積月累,特別影響個(gè)人發(fā)展.某校的一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)該校學(xué)生進(jìn)行“是否有明顯拖延癥”的調(diào)查中,隨機(jī)發(fā)放了110份問(wèn)卷.對(duì)收回的100份有效問(wèn)卷進(jìn)行統(tǒng)計(jì),得到如下 列聯(lián)表:

(1)按女生是否有明顯拖延癥進(jìn)行分層,已經(jīng)從40份女生問(wèn)卷中抽取了8份問(wèn)卷,現(xiàn)從這8份問(wèn)卷中再隨機(jī)抽取3份,并記其中無(wú)明顯拖延癥的問(wèn)卷的份數(shù)為 ,試求隨機(jī)變量 的分布列和數(shù)學(xué)期望;
(2)若在犯錯(cuò)誤的概率不超過(guò) 的前提下認(rèn)為無(wú)明顯拖延癥與性別有關(guān),那么根據(jù)臨界值表,最精確的 的值應(yīng)為多少?請(qǐng)說(shuō)明理由.附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量 ,其中 .
獨(dú)立性檢驗(yàn)臨界值表:

【答案】
(1)解:按分層抽樣,8人中“有明顯拖延癥”6人,“無(wú)有明顯拖延癥” 人,隨機(jī)變量 的可能取值為0,1,2.按超幾何分布可求得分布列。(2)由題意可算得 , ,所以 . 試題
(2)解:由題設(shè)條件得 ,

由臨界值表可知: ,∴


【解析】(1)根據(jù)題意利用超幾何分布即可得出分布列以及數(shù)學(xué)期望值。(2)根據(jù)獨(dú)立性檢驗(yàn)的基本思想的應(yīng)用計(jì)算公式可得出K2 的觀測(cè)值k即可得出結(jié)果。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列 滿足 ,且 .
(1)寫(xiě)出 的前3項(xiàng),并猜想其通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在甲、乙兩個(gè)盒子中分別裝有標(biāo)號(hào)為1,2,3,4,5的五個(gè)球,現(xiàn)從甲、乙兩個(gè)盒子中各取出1個(gè)球,每個(gè)球被取出的可能性相等.

(1)求取出的兩個(gè)球上標(biāo)號(hào)為相鄰整數(shù)的概率;

(2)求取出的兩個(gè)球上標(biāo)號(hào)之和與標(biāo)號(hào)之積都不小于5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=[x3+3x2+(a+6)x+6﹣a]ex在區(qū)間(2,4)上存在極大值點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,﹣32)
B.(﹣∞,﹣27)
C.(﹣32,﹣27)
D.(﹣32,﹣27]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線 的極坐標(biāo)方程是 ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為 軸的正半軸,建立平面直角坐標(biāo)系,在平面直角坐標(biāo)系 中,直線 經(jīng)過(guò)點(diǎn) ,傾斜角 .
(1)寫(xiě)出曲線 的直角坐標(biāo)方程和直線 的參數(shù)方程;
(2)設(shè) 與曲線 相交于 兩點(diǎn),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形的邊長(zhǎng)為2, . 是邊上一點(diǎn),線段于點(diǎn).

(1)若的面積為,求的長(zhǎng);

(2)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù) .
(1)求函數(shù) 的最小正周期;
(2)在 中, 分別為內(nèi)角 的對(duì)邊,且 ,求 的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)兩個(gè)變量x , y進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):(x1 , y1),(x2 , y2),…(xn , yn),則下列說(shuō)法中不正確的是( )
A.由樣本數(shù)據(jù)得到的回歸方程 必過(guò)樣本點(diǎn)的中心
B.殘差平方和越小的模型,擬合的效果越好
C.用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2越小,說(shuō)明模型的擬合效果越好
D.兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若向量 、 的起點(diǎn)與終點(diǎn)M、A、B、C互不重合且無(wú)三點(diǎn)共線,且滿足下列關(guān)系(O是空間任一點(diǎn)),則能使向量 、 成為空間一組基底的關(guān)系是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案