【題目】某工廠生產(chǎn)部門隨機(jī)抽測生產(chǎn)某種零件的工人的日加工零件數(shù)(單位:件),其中A車間13人,B車間12人,獲得數(shù)據(jù)如下:

根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:

分組

頻數(shù)

頻率

[2530]

3

0.12

30,35]

5

0.20

3540]

8

0.32

40,45]

n1

f1

4550]

n2

f2

1)確定樣本頻率分布表中n1、n2f1f2的值;

2)現(xiàn)從日加工零件數(shù)落在(4045]的工人中隨機(jī)選取兩個人,求這兩個人中至少有一個來自B車間的概率.

【答案】1,,;2

【解析】

1)根據(jù)莖葉圖數(shù)據(jù)和頻數(shù)分布表即可得到結(jié)果;(2)確定車間的人數(shù),根據(jù)古典概型求得結(jié)果.

1)由莖葉圖和樣本頻數(shù)分布表得:,

2)日加工零件數(shù)落在的工人共有人,其中人在車間,人在車間

從日加工零件數(shù)落在的工人中隨機(jī)選取兩個人,基本事件總數(shù)

這兩個人中至少有一個來自車間包含的基本事件個數(shù)

這兩個人中至少有一個來自車間的概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P—ABCD的底面是邊長為a的棱形,PD⊥底面ABCD.

1)證明:AC⊥平面PBD;

2)若PD=AD,直線PB與平面ABCD所成的角為45°,四棱錐PABCD的體積為,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)是否存在實數(shù),使得等式 對于一切正整數(shù)都成立?若存在,求出,的值并給出證明;若不存在,請說明理由.

(2)求證:對任意的,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對應(yīng)的邊分別為ab,c,已知b1c22cosAbcosC+ccosB)=a,則A__________;若M為邊BC的中點,則|AM|__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,n),用最小二乘法建立的回歸方程為,則下列結(jié)論中不正確的是( 。

A. 若該大學(xué)某女生身高為170cm,則可斷定其體重必為

B. 回歸直線過樣本點的中心

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加

D. yx具有正的線性相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,有正弦定理:定值,這個定值就是的外接圓的直徑如圖2所示,中,已知,點M在直線EF上從左到右運動M不與E、F重合,對于M的每一個位置,記的外接圓面積與的外接圓面積的比值為,那么  

A. 先變小再變大

B. 僅當(dāng)M為線段EF的中點時,取得最大值

C. 先變大再變小

D. 是一個定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知是橢圓上的一點,從原點向圓作兩條切線,分別交橢圓于點

(1)若點在第一象限,且直線互相垂直,求圓的方程;

(2)若直線的斜率存在,并記為,求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:

作物產(chǎn)量(kg)

300

500

概率

0.5

0.5

作物市場價格(元/kg)

6

10

概率

0.4

0.6

(1)設(shè)X表示在這塊地上種植1季此作物的利潤,求X的分布列;

(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中為自然對數(shù)的底數(shù)).

(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;

(2)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案