【題目】已知某市大約有800萬(wàn)網(wǎng)絡(luò)購(gòu)物者,某電子商務(wù)公司對(duì)該市n名網(wǎng)絡(luò)購(gòu)物者某年度上半年的消費(fèi)情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)消費(fèi)金額(單位:萬(wàn)元)都在區(qū)間[0.5,1.1]內(nèi),其頻率分布直方圖如圖所示.

(1)求該市n名網(wǎng)絡(luò)購(gòu)物者該年度上半年的消費(fèi)金額的平均數(shù)與中位數(shù)(以各區(qū)間的中點(diǎn)值代表該區(qū)間的均值).

(2)現(xiàn)從前4組中選取18人進(jìn)行網(wǎng)絡(luò)購(gòu)物愛(ài)好調(diào)查.

(i)求在前4組中各組應(yīng)該選取的人數(shù);

(ii)在前2組所選取的人中,再隨機(jī)選2人,求這2人都是來(lái)自第二組的概率.

【答案】(1)0.752,0.76;(2)(i)3,4,5,6人;(ii).

【解析】

1)通過(guò)頻率分布直方圖估計(jì)總體的平均值和中位數(shù)等數(shù)字特征,依照規(guī)則即可算出;(2)(i)由分層抽樣的特點(diǎn),即可求出;(ii)利用古典概型計(jì)算公式算出即可。

1)依題意,平均數(shù)為0.55×0.15+0.65×0.2+0.75×0.25+0.85×0.3+0.95×0.08+×1.05×0.020.752;

1.5×0.1+2.0×0.10.350.5,而1.5×0.1+2.0×0.1+2.5×0.10.60.5,所以中位數(shù)位于[0.7,0.8)之間,

所以中位數(shù)為0.7+0.76

2)(i)前4組的頻率分別為:0.150.2,0.25,0.3,

所以前四組人數(shù)比為:0.150.20.250.33456,

4組共抽取18人,所以第一組抽取18×3人,第二組抽取人數(shù)為18×4人,第3組抽取人數(shù)為18×5人,第4組抽取人數(shù)為18×6人.

所以前4組中各組應(yīng)該選取的人數(shù)分別為34,56人.

ii)由(i)知,第一組抽到3人,第二組抽到4人,

設(shè)事件A表示在前2組所選取的人中,再隨機(jī)選2人,求這2人都是來(lái)自第二組,

PA)=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)(x∈R)滿(mǎn)足f(1)=1,且f(x)的導(dǎo)數(shù)f′(x)< ,則不等式f(x2)< 的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某實(shí)驗(yàn)單次成功的概率為0.8,記事件A為“在實(shí)驗(yàn)條件相同的情況下,重復(fù)3次實(shí)驗(yàn),各次實(shí)驗(yàn)互不影響,則3次實(shí)驗(yàn)中至少成功2次”,現(xiàn)采用隨機(jī)模擬的方法估計(jì)事件4的概率:先由計(jì)算機(jī)給出0~9十個(gè)整數(shù)值的隨機(jī)數(shù),指定0,1表示單次實(shí)驗(yàn)失敗,2,3,4,5,6,7,8,9表示單次實(shí)驗(yàn)成功,以3個(gè)隨機(jī)數(shù)為組,代表3次實(shí)驗(yàn)的結(jié)果經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù),如下表:

752

029

714

985

034

437

863

694

141

469

037

623

804

601

366

959

742

761

428

261

根據(jù)以上方法及數(shù)據(jù),估計(jì)事件A的概率為( )

A.0.384B.0.65C.0.9D.0.904

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線(xiàn)的極坐標(biāo)方程;

(2)若點(diǎn)的極坐標(biāo)為是曲線(xiàn)上的一動(dòng)點(diǎn),求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)新研發(fā)了一種產(chǎn)品,該產(chǎn)品每件成本為5元,將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行銷(xiāo)售,得到如下數(shù)據(jù):

單價(jià)(元)

8

8.2

8.4

8.6

8.8

9

銷(xiāo)量(件)

90

84

83

80

75

68

1)求銷(xiāo)量(件)關(guān)于單價(jià)(元)的線(xiàn)性回歸方程;

2)若單價(jià)定為10元,估計(jì)銷(xiāo)量為多少件;

3)根據(jù)銷(xiāo)量關(guān)于單價(jià)的線(xiàn)性回歸方程,要使利潤(rùn)最大,應(yīng)將價(jià)格定為多少?

參考公式:.參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查家庭的月收入與月儲(chǔ)蓄的情況,某居民區(qū)的物業(yè)工作人員隨機(jī)抽取該小區(qū)20個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,計(jì)算得:,,,.

(1)求家庭的月儲(chǔ)蓄對(duì)月收入的線(xiàn)性回歸方程

(2)指出(1)中所求出方程的系數(shù),并判斷變量之間是正相關(guān)還是負(fù)相關(guān);

(3)若該居民區(qū)某家庭月收入為9千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角,所對(duì)的邊分別為,,且,則下列結(jié)論正確的是( )

A.B.是鈍角三角形

C.的最大內(nèi)角是最小內(nèi)角的D.,則外接圓半徑為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

2)對(duì)于,為任意實(shí)數(shù),關(guān)于的方程恰好有兩個(gè)不等實(shí)根,求實(shí)數(shù)的值;

3)在(2)的條件下,若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案