已知函數(shù)(a≠0)滿足,為偶函數(shù),且x=-2是函數(shù)的一個零點.又>0).
(1)求函數(shù)的解析式;
(2)若關(guān)于x 的方程上有解,求實數(shù)的取值范圍;
(3)令,求的單調(diào)區(qū)間.
(1)函數(shù)的解析式為; (2)實數(shù)的取值范圍為
(3)當(dāng)時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;
當(dāng)時,的單調(diào)遞減區(qū)間為;
單調(diào)遞增區(qū)間為.    

試題分析:(1)由,又為偶函數(shù),是函數(shù)的一個零點,得出關(guān)于的方程,即可求函數(shù)的解析式;
(2)上有解,等價于上有解,可求實數(shù)的取值范圍;
(3)先求出的解析式,再分、兩種情況求出的單調(diào)區(qū)間.
(1)由                         1分

又∵為偶函數(shù)  ∴、                    2分
是函數(shù)的一個零點 ∴ ∴、
解①②得a=1,b=-2
                                       4分
(2)上有解,即上有解.

上單調(diào)遞增
∴實數(shù)的取值范圍為                                8分
(3)
                          9分
①當(dāng)時,的對稱軸為
∵m>0 ∴ 總成立 
單調(diào)遞減,在上單調(diào)遞增.    11分
②當(dāng)時,的對稱軸為
單調(diào)遞減         13分
,單調(diào)遞減,在上單調(diào)遞增.   15分
綜上,
當(dāng)時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;
當(dāng)時,的單調(diào)遞減區(qū)間為;單調(diào)遞增區(qū)間為.                                              16分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)
(1)當(dāng)時,的最大值為,求的最小值;
(2)對于任意的,總有,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖像關(guān)于原點對稱,且
(1)求的表達(dá)式;
(2)若上是增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

請你設(shè)計一個包裝盒,如圖所示,是邊長為的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,上是被切去的等腰直角三角形斜邊的兩個端點,設(shè)
(1)若廣告商要求包裝盒側(cè)面積最大,試問應(yīng)取何值?
(2)若廣告商要求包裝盒容積最大,試問應(yīng)取何值?并求出此時包裝盒的高與底面邊長的比值.
    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)(是自然對數(shù)的底數(shù),),且
(1)求實數(shù)的值,并求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),對任意,恒有成立.求實數(shù)的取值范圍;
(3)若正實數(shù)滿足,,試證明:;并進(jìn)一步判斷:當(dāng)正實數(shù)滿足,且是互不相等的實數(shù)時,不等式是否仍然成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù),的圖象可能是下列圖象中的(   )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)滿足:,則=__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下了函數(shù)中,滿足“”的單調(diào)遞增函數(shù)是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),,記,則(      )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案