【題目】已知函數(shù),.

(Ⅰ)當(dāng)時(shí),求的最小值;

(Ⅱ)若有兩個(gè)零點(diǎn),求參數(shù)的取值范圍

【答案】(Ⅰ)0;

(Ⅱ).

【解析】

(Ⅰ)求函數(shù)的定義域,再求導(dǎo),判別導(dǎo)函數(shù)的正負(fù)可得原函數(shù)的單調(diào)性,可求得最小值;

(Ⅱ)對a進(jìn)行分類討論,分別利用其導(dǎo)函數(shù)的應(yīng)用,判別其單調(diào)性,求其最值,可得參數(shù)a的范圍.

(Ⅰ),定義域

當(dāng)時(shí), ,由于 恒成立

單調(diào)遞減, 單調(diào)遞增.

(Ⅱ)

當(dāng)時(shí), 單調(diào)遞減, 單調(diào)遞增,只有一個(gè)零點(diǎn)

當(dāng)時(shí), ,故恒成立,

單調(diào)遞減, 單調(diào)遞增,

故當(dāng)時(shí), 沒有零點(diǎn).

當(dāng)時(shí),令 ,得,

單調(diào)遞減, 單調(diào)遞增. ,

有兩個(gè)零點(diǎn),

單調(diào)遞減,在 單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增, ,又

此時(shí)有兩個(gè)零點(diǎn),

綜上有兩個(gè)零點(diǎn),則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品價(jià)格與該商品日需求量之間的幾組對照數(shù)據(jù)如下表,經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)yx具有線性相關(guān)關(guān)系.

價(jià)格x(元/kg

10

15

20

25

30

日需求量ykg

11

10

8

6

5

1)根據(jù)上表給出的數(shù)據(jù),求出yx的線性回歸方程;

2)利用(1)中的回歸方程,當(dāng)價(jià)格/kg時(shí),日需求量y的預(yù)測值為多少?

(參考公式:線性回歸方程,其中,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過坐標(biāo)原點(diǎn)的兩條直線與橢圓分別相交于點(diǎn)和點(diǎn)、,其中直線經(jīng)過的左焦點(diǎn),直線經(jīng)過的右焦點(diǎn).當(dāng)直線不垂直于坐標(biāo)軸時(shí),的斜率乘積為.

(1)求橢圓的方程;

(2)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,滿足,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該?忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結(jié)論正確的是  

A. 與2015年相比,2018年一本達(dá)線人數(shù)減少

B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了

C. 2015年與2018年藝體達(dá)線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本相同的資料書配給三個(gè)班級(jí),要求每班至少一本且至多六本,則不同的分配方法共有_____種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓.

(Ⅰ)是拋物線的焦點(diǎn),是拋物線上的定點(diǎn),,求拋物線的方程;

(Ⅱ)在(Ⅰ)的條件下,過點(diǎn)的直線與圓相切,設(shè)直線交拋物線,兩點(diǎn),則在軸上是否存在點(diǎn)使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是各項(xiàng)均為正數(shù)的等差數(shù)列.

(1)若,且成等比數(shù)列,求數(shù)列的通項(xiàng)公式

(2)在(1)的條件下,數(shù)列的前和為,設(shè),若對任意的,不等式恒成立,求突數(shù)的最小值:

(3)若數(shù)列中有兩項(xiàng)可以表示位某個(gè)整數(shù)的不同次冪,求證:數(shù)列中存在無窮多項(xiàng)構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如圖.

1)求頻率分布直方圖中的值;

2)估計(jì)總體中成績落在中的學(xué)生人數(shù);

3)根據(jù)頻率分布直方圖估計(jì)名學(xué)生數(shù)學(xué)考試成績的眾數(shù),中位數(shù).

查看答案和解析>>

同步練習(xí)冊答案