【題目】用min{a,b,c}表示a,b,c三個數(shù)中的最小值,設(shè)f(x)=min{2x , x+2,10﹣x}(x≥0),則f(x)的最大值為( 。
A.4
B.5
C.6
D.7

【答案】C
【解析】解:10﹣x是減函數(shù),x+2是增函數(shù),2x是增函數(shù),令x+2=10﹣x,x=4,此時,x+2=10﹣x=6,如圖:

y=x+2 與y=2x交點是A、B,y=x+2與 y=10﹣x的交點為C(4,6),
由上圖可知f(x)的圖象如下:

C為最高點,而C(4,6),所以最大值為6.
故選:C
【考點精析】通過靈活運用函數(shù)的最值及其幾何意義,掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲导纯梢越獯鸫祟}.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+c,滿足f(1)=﹣ , 且3a>2c>2b.
(1)求證:a>0時,的取值范圍;
(2)證明函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個零點;
(3)設(shè)x1 , x2是函數(shù)f(x)的兩個零點,求|x1﹣x2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用二分法研究函數(shù)f(x)=x3+3x﹣1的零點時,第一次經(jīng)計算f(0)<0,f(0.5)>0,可得其中一個零點x0 ,第二次應(yīng)計算的f(x)的值為f( ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某銷售公司為了解員工的月工資水平,從1000位員工中隨機抽取100位員工進行調(diào)查,得到如下的頻率分布直方圖:

(1)試由此圖估計該公司員工的月平均工資;

(2)該公司工資發(fā)放是以員工的營銷水平為重要依據(jù)來確定的,一般認為,工資低于4500。元的員工屬于學(xué)徒階段,沒有營銷經(jīng)驗,若進行營銷將會失敗;高于4500元的員工是具備營銷成熟員工,基進行營銷將會成功,F(xiàn)將該樣本按照“學(xué)徒階段工資”、“成熟員工工資”分成兩層,進行分層抽樣,從中抽出5人,在這5人中任選2人進行營銷活動。活動中,每位員工若營銷成功,將為公司贏得3萬元,否則公司將損失1萬元。試問在此次比賽中公司收入多少萬元的可能性最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)當(dāng)時,求證

(2)對任意,存在,使成立,求的取值范圍.(其中是自然對數(shù)的底數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)國務(wù)院批復(fù)同意,鄭州成功入圍國家中心城市,某校學(xué)生團針對“鄭州的發(fā)展環(huán)境”對20名學(xué)生進行問卷調(diào)查打分(滿分100分),得到如圖1所示莖葉圖.

(1)分別計算男生女生打分的平均分,并用數(shù)學(xué)特征評價男女生打分的數(shù)據(jù)分布情況;

(2)如圖2按照打分區(qū)間繪制的直方圖中,求最高矩形的高;

(3)從打分在70分以下(不含70分)的同學(xué)中抽取3人,求有女生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,若Ω是長方體ABCD﹣A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線段A1B1上異于B1的點,F(xiàn)為線段BB1上異于B1的點,且EH∥A1D1 , 則下列結(jié)論中不正確的是( 。

A.EH∥FG
B.四邊形EFGH是矩形
C.Ω是棱柱
D.Ω是棱臺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】矩形的兩條對角線相交于點, 邊所在的直線的方程為,點在邊所在的直線上. 

(1)求邊所在直線的方程;

(2)求矩形外接圓的方程;

(3)過點的直線被矩形的外接圓截得的弦長為,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案